scholarly journals Based on ADRC Strategy for Tracking Trajectory of Undamped Plants

2021 ◽  
Vol 1906 (1) ◽  
pp. 012045
Author(s):  
Weiwen Hu ◽  
Shengguo Zhang ◽  
Wenru Xu ◽  
Jiawei Yang ◽  
Hao Hou
Keyword(s):  
2016 ◽  
Vol 53 (1) ◽  
pp. 24-33 ◽  
Author(s):  
S. Upnere ◽  
N. Jekabsons ◽  
U. Locans

Abstract The current paper presents an engineering approach for studies of the control algorithm designed for a mechanically robust large antenna. Feed-forward control methods with the 3rd-order polynomial tracking algorithm are supplemented to the original feed-back PID control system. Dynamical model of the existing servo system of 32m radio telescope has been developed to widen a case analysis of observation sessions and efficiency of the control algorithms due to limited access to an antenna. Algorithms along with the results from the system implemented on a real antenna as well as model results are presented.


Author(s):  
Kareem Ghazi Abdulhussein ◽  
Naseer Majeed Yasin ◽  
Ihsan Jabbar Hasan

In this paper, there are two contributions: The first contribution is to design a robust cascade P-PI controller to control the speed and position of the permanent magnet DC motor (PMDC). The second contribution is to use three methods to tuning the parameter values for this cascade controller by making a comparison between them to obtain the best results to ensure accurate tracking trajectory on the axis to reach the desired position. These methods are the classical method (CM) and it requires some assumptions, the genetic algorithm (GA), and the particle swarm optimization algorithm (PSO). The simulation results show the system becomes unstable after applying the load when using the classical method because it assumes cancellation of the load effect. Also, an overshoot of about 3.763% is observed, and a deviation from the desired position of about 12.03 degrees is observed when using the GA algorithm, while no deviation or overshoot is observed when using the PSO algorithm. Therefore, the PSO algorithm has superiority as compared to the other two methods in improving the performance of the PMDC motor by extracting the best parameters for the cascade P-PI controller to reach the desired position at a regular speed.


Sign in / Sign up

Export Citation Format

Share Document