scholarly journals Cermet materials reinforced with a small addition of spinel nanoparticles for molten salt power systems

2021 ◽  
Vol 1925 (1) ◽  
pp. 012002
Author(s):  
L E Agureev ◽  
B S Ivanov ◽  
I N Laptev ◽  
A V Ivanov ◽  
A A Ashmarin
Author(s):  
Qianyu Shi ◽  
Zhijian Wang ◽  
Hui Tang ◽  
Qi Li

Abstract Large scale molten salt storage tanks are widely used in the solar thermal power systems. For these tanks, buckling is a primary failure mode because of its features such as large scale, thinned wall and high temperature. Suffering high temperature condition is a major distinction between molten salt storage tanks and other water or oil tanks. High temperature can cause large thermal deformation for large scale structures which may have an effect on the safety assessment, especially on buckling assessment. Meanwhile, the hydrostatic pressure of molten salt can also cause the change of tank’s configuration. In this paper, a typical large molten salt storage tank has been studied. The critical buckling loads of the tank roof are obtained using nonlinear buckling analysis considering thermal loads and hydrostatic pressure. The results are discussed and some conclusions are proposed for engineering design.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Brian D. Iverson ◽  
Stephen J. Bauer ◽  
Scott M. Flueckiger

Thermocline tanks have been considered as an alternative to traditional two-tank molten salt thermal storage in concentrating solar power systems due to their potential for cost reduction. One concern for thermocline usage is thermal ratcheting caused by the internal rock bed deformation during cyclic operation and significant temperature fluctuations. Thermal ratcheting studies have been performed in the literature to identify the possibility of tank rupture. However, these studies numerically modeled the ratcheting behavior utilizing bed properties that have never been measured for the materials used in thermocline storage systems. This work presents triaxial test data quartzite and silica thermocline filler materials to better inform future investigations of thermal ratcheting. Molten salt is replaced with water as the interstitial fluid due to similarity in dimensionless numbers and to accommodate room temperature measurement. Material property data for cohesion, dilatancy angle, internal angle of friction, Young's modulus, Poisson's ratio, and bulk modulus are presented for 0.138–0.414 MPa confining pressure. The material properties are then compared to those assumed in the literature to comment on the potential impact of this property data relative to thermal ratcheting.


2020 ◽  
pp. 1-13
Author(s):  
Xiaoxin Wang ◽  
Jusus Rincon ◽  
Peiwen Li ◽  
Youyang Zhao ◽  
Judith Vidal

Abstract A new eutectic chloride molten salt, MgCl2-KCl-NaCl (wt.% 45.98-38.91-15.11), has been recognized as one of the most promising high-temperature heat-transfer fluids (HTF) for both heat transfer and thermal storage for the 3rd Generation concentrated solar thermal power (CSP) systems. For the first time, some essential thermophysical properties of this eutectic chloride molten salt needed for basic heat transfer and energy storage analysis in the application of concentrating solar power systems have been experimentally tested and provided as functions of temperature in the range from 450 °C to 700 °C. The studied properties include heat capacity, melting point, heat of fusion, viscosity, vapor pressure, density, and thermal conductivity. The property equations provide essential database for engineers to use to calculate convective heat transfer in concentrated solar receivers, heat exchangers, and thermal storage for concentrated solar power plants.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xiankun Xu ◽  
Xiaoxin Wang ◽  
Peiwen Li ◽  
Yuanyuan Li ◽  
Qing Hao ◽  
...  

The eutectic mixture of MgCl2–KCl molten salt is a high temperature heat transfer and thermal storage fluid able to be used at temperatures up to 800 °C in concentrating solar thermal power systems. The molten salt thermophysical properties are reported including vapor pressure, heat capacity, density, viscosity, thermal conductivity, and the corrosion behavior of nickel-based alloys in the molten salt corrosion at high temperatures. Correlations of the measured properties as functions of molten salt temperatures are presented for industrial applications. The test results of tensile strength of two nickel-based alloys exposed in the molten salt at a temperature of 800 °C from 1-week length to 16-week length are reported. It was found that the corrosion and strength loss is rather low when the salt is first processed to remove water and oxygen.


1978 ◽  
Author(s):  
N. G. Carlson ◽  
F. L. Robson ◽  
J. S. Westmoreland ◽  
W. M. Talbert

This paper discusses the second-generation integrated coal gasification /combined-cycle power systems using, as a basis, the molten-salt gasifier. A brief description of The major equipment which forms the basis of the power plant, the analysis identifying the operating conditions for the integrated system, and a discussion of the overall power plant design are given.


2020 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Hanane Ait Lahoussine Ouali ◽  
Mohammed Amine Moussaoui ◽  
Ahmed Mezrhab ◽  
Hassane Naji

This study deals with a numerical investigation to assess and compare the thermal and economic performance of two solar tower power systems. It concerns the Molten Salt (MS) and Direct Steam Generation (DSG) technologies used as heat carrier and storage. For this purpose, a 50 MWe solar tower plant without thermal energy  storage under the climatic conditions of the eastern Moroccan region is simulated with the System Advisor Model (SAM) software. The meteorological data has been collected via a high precision meteorological station located in Oujda city(34°40'53'' N 1°54'30.9'' W). The results are presented in terms of monthly energy production, annual energy output, and Levelized Electricity Cost (LEC). From these findings, it can be concluded that, for an amount annual Direct Normal Irradiance (DNI) of 1989.9 kWh/m2/yr, the molten salt plant has the highest annual energy production than the DSG (86.3 GWh for MS against 83.3 GWh for DSG) and the LEC of the Molten salt plant is 12.5 % lower than the DSG plant. ©2020. CBIORE-IJRED. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document