scholarly journals Influence of guide vane angle of circulating hot blast stove sleeve on temperature field and flow field

2021 ◽  
Vol 1983 (1) ◽  
pp. 012037
Author(s):  
Ru Xiao ◽  
Jiangyong Zhang ◽  
Shengjie Jiao
Author(s):  
Ujjwal Shrestha ◽  
Jungwan Park ◽  
Young-Do Choi

Abstract Optimization is uprising technology in the engineering field, which enhance the performance of mechanical components. Likewise, upcoming turbomachinery designs need to be more efficient, cost-effective and easy manufacturing. Many optimization techniques have implemented for the development of efficient turbomachines. In this study, the optimization has mostly confined to the stay vane of reaction turbine like Francis, Pump Turbine etc. Stay vanes are mainly used to direct the flow towards guide vane and runner in the reaction type turbine (Francis, Pump Turbine). The three-dimensional flow field from the spiral casing is highly distorted, which causes secondary flow. However, the uniform flow field has maintained by stay vane. Due to steady flow field from stay vane, the performance of the runner has improved. Therefore, the better design of stay vane has been required for the improvement of the flow field around the runner passage. The design parameters of the stay vane are vane angle distribution and thickness distribution from leading edge to trailing edge. The vane angle distribution controls the stability of flow field direction and momentum towards the runner. Similarly, the thickness distribution will maintain the profile of the stay vane. The optimization of stay vane has improved turbine efficiency, flow uniformity, and pressure loss. The multi-objective genetic algorithm (MOGA) was selected for the optimization of stay vane because it satisfies all the objective functions without being dominated by any specific solution. MOGA is a more realistic approach to optimization. The validation test of performance is conducted to compare the result of experimental and numerical methods. The optimized stay vane has improved the flow uniformity around the stay vane.


2018 ◽  
Vol 175 ◽  
pp. 02024 ◽  
Author(s):  
Heng Wang ◽  
Shukun Cao ◽  
Yi Cui ◽  
Zijian Cao ◽  
Shuqiang Xu

In order to improve the working efficiency of the drying tower and the hot blast stove in the process of grain drying, this paper proposes a method to solve the problems of air pollution and energy waste caused by excessive combustion or insufficient combustion of the hot blast stove. Based on finite element analysis, this paper uses ANSYS software to simulate the drying process of grain. This paper briefly introduces the grain drying device model and working mechanism, analyzes the temperature field of the drying device, and studies the influence on the drying effect of the working parameters (hot water, hot air, hot air hot blast stove combustion temperature) during the grain drying process. The results show that the hot air temperature is 85°C, the hot water temperature is 90°C, the combustion chamber temperature is 480°C, the grain drying effect is good, the combustion efficiency of the combustion furnace is the best, and the energy utilization rate is the highest.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


2014 ◽  
Vol 530-531 ◽  
pp. 981-984
Author(s):  
Yao Wu Tang ◽  
Xiang Liu

Grain drying with chain coalfired hot blast stove for temperature stable and economic operation.Boiler control objects with strong coupling, large delay, large inertia characteristics.Fuzzy control on object for low, fast response and predict advanced features. Design the fuzzy predictive controller for chain coalfired hot blast stove temperature control.The test results show that the fuzzy predictive control system is improved effectively the static precision and dynamic characteristic.Fuzzy predictive control for large delay system has better practicability.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

The vast number of turbine cascade studies in the literature has been performed in straight-endwall, high-aspect-ratio, linear cascades. As a result, there has been little appreciation for the role of, and added complexity imposed by, reduced aspect ratios. There also has been little documentation of endwall profiling at these reduced spans. To examine the role of these factors on cascade hydrodynamics, a large-scale nozzle guide vane simulator was constructed at the Heat Transfer Laboratory of the University of Minnesota. This cascade is comprised of three airfoils between one contoured and one flat endwall. The geometries of the airfoils and endwalls, as well as the experimental conditions in the simulator, are representative of those in commercial operation. Measurements with hot-wire anemometry were taken to characterize the flow approaching the cascade. These measurements show that the flow field in this cascade is highly elliptic and influenced by pressure gradients that are established within the cascade. Exit flow field measurements with triple-sensor anemometry and pressure measurements within the cascade indicate that the acceleration imposed by endwall contouring and airfoil turning is able to suppress the size and strength of key secondary flow features. In addition, the flow field near the contoured endwall differs significantly from that adjacent to the straight endwall.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marco Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a 3-D Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field has been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development is inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass averaged losses shows a significant performance improvement in the contoured cascade. This has to be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


Refractories ◽  
1984 ◽  
Vol 25 (11-12) ◽  
pp. 663-666 ◽  
Author(s):  
F. R. Shklyar ◽  
E. D. Lekomtseva ◽  
M. I. Agafonova ◽  
N. L. Brun'ko ◽  
E. L. Surgucheva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document