scholarly journals State-of-health estimation and remaining useful life prediction of lithium-ion batteries based on extreme learning machine

2021 ◽  
Vol 1983 (1) ◽  
pp. 012058
Author(s):  
Meng Wei ◽  
Min Ye ◽  
Qiao Wang ◽  
Chenguang Wu ◽  
Yuchuan Ma
Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


2021 ◽  
Vol 7 ◽  
pp. 5562-5574 ◽  
Author(s):  
Shunli Wang ◽  
Siyu Jin ◽  
Dekui Bai ◽  
Yongcun Fan ◽  
Haotian Shi ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 1062 ◽  
Author(s):  
Tarek Berghout ◽  
Leïla-Hayet Mouss ◽  
Ouahab Kadri ◽  
Lotfi Saïdi ◽  
Mohamed Benbouzid

The efficient data investigation for fast and accurate remaining useful life prediction of aircraft engines can be considered as a very important task for maintenance operations. In this context, the key issue is how an appropriate investigation can be conducted for the extraction of important information from data-driven sequences in high dimensional space in order to guarantee a reliable conclusion. In this paper, a new data-driven learning scheme based on an online sequential extreme learning machine algorithm is proposed for remaining useful life prediction. Firstly, a new feature mapping technique based on stacked autoencoders is proposed to enhance features representations through an accurate reconstruction. In addition, to attempt into addressing dynamic programming based on environmental feedback, a new dynamic forgetting function based on the temporal difference of recursive learning is introduced to enhance dynamic tracking ability of newly coming data. Moreover, a new updated selection strategy was developed in order to discard the unwanted data sequences and to ensure the convergence of the training model parameters to their appropriate values. The proposed approach is validated on the C-MAPSS dataset where experimental results confirm that it yields satisfactory accuracy and efficiency of the prediction model compared to other existing methods.


Sign in / Sign up

Export Citation Format

Share Document