scholarly journals Study on shear stress distribution of glass fiber reinforced polymer soil nail in foundation pit support pullout test

2021 ◽  
Vol 2009 (1) ◽  
pp. 012024
Author(s):  
Xiang-li Wang ◽  
Chun-gang Deng ◽  
Yue Qin ◽  
Gang Shen ◽  
Chao Chen
2015 ◽  
Vol 52 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Hong-Hu Zhu ◽  
Qiang Xu ◽  
Bin Shi ◽  
Guo-Xiong Mei

Glass fiber reinforced polymer (GFRP) materials are gaining increasing use in geotechnical engineering applications in recent years. The long-term performance of reinforced geostructures may be influenced by the rheological properties of GFRP soil nails or anchors. However, a clear understanding of this effect is lacking. This work aims to investigate the interaction between GFRP soil nail and sand under pullout conditions considering the time-dependent effect. A time-dependent model was proposed to describe the load–deformation characteristics of a GFRP soil nail during pullout. Laboratory pullout tests were performed using a load-controlled pullout apparatus to verify the effectiveness of the proposed model. Quasi-distributed fiber Bragg grating (FBG) optical fiber sensors were adhered on the pre-grooved GFRP soil nail to capture the variations of axial strain during testing. The test results are presented, interpreted, and discussed. It is shown that there is good agreement between the simulation results and the experimental data under low stress levels. Additionally, the impacts of model parameters on the predicted time-dependent pullout behavior of a GFRP soil nail were examined through parametric studies. The results indicate that the distributions of tensile force and GFRP–sand interfacial shear stress along the nail length are highly time dependent. The creep displacement of a GFRP soil nail is significantly influenced by the rheological parameters of the proposed model.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Author(s):  
Priyadarsini Morampudi ◽  
Kiran Kumar Namala ◽  
Yeshwanth Kumar Gajjela ◽  
Majjiga Barath ◽  
Ganaparthy Prudhvi

Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 22
Author(s):  
Emadelddin Hassan ◽  
Iasonas Zekos ◽  
Philip Jansson ◽  
Toa Pecur ◽  
Christophe Floreani ◽  
...  

Erosion of tidal turbine blades in the marine environment is a major material challenge due to the high thrust and torsional loading at the rotating surfaces, which limits the ability to harness energy from tidal sources. Polymer–matrix composites can exhibit leading-blade edge erosion due to marine flows containing salt and solid particles of sand. Anti-erosion coatings can be used for more ductility at the blade surface, but the discontinuity between the coating and the stiffer composite can be a site of failure. Therefore, it is desirable to have a polymer matrix with a gradient of toughness, with a tougher, more ductile polymer matrix at the blade surface, transitioning gradually to the high stiffness matrix needed to provide high composite mechanical properties. In this study, multiple powder epoxy systems were investigated, and two were selected to manufacture unidirectional glass-fiber-reinforced polymer (UD-GFRP) plates with different epoxy ratios at the surface and interior plies, leading to a toughening gradient within the plate. The gradient plates were then mechanically compared to their standard counterparts. Solid particle erosion testing was carried out at various test conditions and parameters on UD-GFRP specimens in a slurry environment. The experiments performed were based on a model of the UK marine environment for a typical tidal energy farm with respect to the concentration of saltwater and the size of solid particle erodent. The morphologies of the surfaces were examined by SEM. Erosion maps were generated based on the result showing significant differences for materials of different stiffness in such conditions.


Author(s):  
Iurii Burda ◽  
Michel Barbezat ◽  
Andreas J Brunner

Glass-fiber reinforced polymer (GFRP) composite rods with epoxy matrix filled with electrically nonconducting particles find widespread use in high-voltage electrical insulator applications. The service loads require a range of different, minimum material property values, e.g. toughness, tensile, or compressive strength, but also component-specific performance, e.g. pull-out friction of surface crimped metal fittings or electric breakdown strength. The contribution discusses selected examples of the effects of different particle filler types on the properties of filled epoxy resin as well as on the behavior of GFRP rods with such a matrix. In all investigated systems CaCO3 was used as micron-sized filler, complemented by different amounts of either nanosilica or core-shell rubber (binary filler), or by both, nanosilica and core-shell rubber (ternary filler). With ternary filler combinations at a content of 36 wt%, fracture toughness GIC was improved in nanocomposite epoxy plates and in GFRP rods by 60% and 100%, respectively compared to a matrix with 20 wt% CaCO3 (used as reference system). The glass transition temperature Tg for some ternary systems dropped from 160 °C (for neat epoxy), to approximately 140 °C, the maximum allowed drop in Tg in view of requirements from further processing steps of the electrically insulating components. The ternary fillers yield transfer of the improvements of fracture properties from epoxy nanocomposite plates into the GFRP rods beyond that of the system with CaCO3 filler only. Compressive strength of the GFRP rods was improved by about 20% only for the binary nanosilica and CaCO3 filler, and was not significantly enhanced with the ternary systems. That combination, however, did not yield improvements in toughness beyond the CaCO3-filled nanocomposite plates and rods. With the range of filler types and contents investigated here, it was hence not possible to simultaneously optimize both, fracture toughness and compressive strength of the GFRP insulator rods.


Sign in / Sign up

Export Citation Format

Share Document