scholarly journals Structure and properties of the low-energy deposited TiO2 thin films: results of the molecular dynamics simulation

2021 ◽  
Vol 2015 (1) ◽  
pp. 012051
Author(s):  
F.V. Grigoriev ◽  
V.B. Sulimov ◽  
A.V. Tikhonravov

Abstract The classical molecular dynamics simulation of the low-energy glancing angle deposition of titanium dioxide films is performed. The deposition angle varies from 60° to 80°. It is found that the film structure consists of parallel slanted columns which lead to the anisotropy of films properties. The difference between the main components of the refractive index tensor is about 0.14, which is close to the values obtained for high-energy titanium dioxide films and larger than 0.03 obtained earlier for silicon dioxide films.

1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


Sign in / Sign up

Export Citation Format

Share Document