scholarly journals Uncertainties assessment in real-time hybrid model for ocean basin testing of a floating offshore wind turbine

2021 ◽  
Vol 2018 (1) ◽  
pp. 012036
Author(s):  
Miguel Somoano ◽  
Tommaso Battistella ◽  
Sergio Fernández-Ruano ◽  
Raúl Guanche
Author(s):  
Ilmas Bayati ◽  
Marco Belloli ◽  
Alan Facchinetti

This paper presents the numerical and experimental implementation of a 2 degrees-of-freedom (DoF) setup for simulating the surge and pitch motion of OC5 semi submersible floating offshore wind turbine, through the “hardware-in-the-loop” (HIL) approach during wind tunnel tests. This approach is hybrid since a real-time combination of computations and measurements are carried out during the experiments. This allows to separate the model tests of floating wind turbines into wave/ocean basin and wind tunnel tests, as it is currently done within the H2020/LIFES50+ project respectively at Marintek (Norway) and Politecnico di Milano (Italy), with the possibility of exploiting the advantages of each facility and overcoming the scaling issues and conflicts (e.g. Froude-Reynolds) that are emphasized when it comes to testing both wind and wave in a single test facility. In this paper the modelling approach and experimental implementation are presented, with a special focus on signals and data handling in the real-time HIL control system aimed at minimizing the effect of model/full scale discrepancies. Results are shown for free decays, regular and irregular sea states, showing promising results for the next 6-DoF system being finalized.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4138
Author(s):  
Kwansu Kim ◽  
Hyunjong Kim ◽  
Hyungyu Kim ◽  
Jaehoon Son ◽  
Jungtae Kim ◽  
...  

In this study, a resonance avoidance control algorithm was designed to address the tower resonance problem of a semi-submersible floating offshore wind turbine (FOWT) and the dynamic performance of the wind turbine, floater platform, and mooring lines at two exclusion zone ranges were evaluated. The simulations were performed using Bladed, a commercial software for wind turbine analysis. The length of simulation for the analysis of the dynamic response of the six degrees of freedom (DoF) motion of the floater platform under a specific load case was 3600 s. The simulation results are presented in terms of the time domain, frequency domain, and using statistical analysis. As a result of applying the resonance avoidance control algorithm, when the exclusion zone range was ±0.5 rpm from the resonance rpm, the overall performance of the wind turbine was negatively affected, and when the range was sufficiently wide at ±1 rpm, the mean power was reduced by 0.04%, and the damage equivalent load of the tower base side–side bending moment was reduced by 14.02%. The tower resonance problem of the FOWT caused by practical limitations in design and cost issues can be resolved by changing the torque control algorithm.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


Sign in / Sign up

Export Citation Format

Share Document