scholarly journals Current Status of Electron Beam Selective Melting Additive Manufacturing Technology

2021 ◽  
Vol 2044 (1) ◽  
pp. 012126
Author(s):  
Haozhen Jia
2016 ◽  
Vol 94 ◽  
pp. 17-27 ◽  
Author(s):  
Alejandro Hinojos ◽  
Jorge Mireles ◽  
Ashley Reichardt ◽  
Pedro Frigola ◽  
Peter Hosemann ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
P. Wanjara ◽  
K. Watanabe ◽  
C. de Formanoir ◽  
Q. Yang ◽  
C. Bescond ◽  
...  

Wire feeding can be combined with different heat sources, for example, arc, laser, and electron beam, to enable additive manufacturing and repair of metallic materials. In the case of titanium alloys, the vacuum operational environment of electron beam systems prevents atmospheric contamination during high-temperature processing and ensures high performance and reliability of additively manufactured or repaired components. In the present work, the feasibility of developing a repair process that emulates refurbishing an “extensively eroded” fan blade leading edge using wire-feed electron beam additive manufacturing technology was examined. The integrity of the Ti6Al4V wall structure deposited on a 3 mm thick Ti6Al4V substrate was verified using X-ray microcomputed tomography with a three-dimensional reconstruction. To understand the geometrical distortion in the substrate, three-dimensional displacement mapping with digital image correlation was undertaken after refurbishment and postdeposition stress relief heat treatment. Other characteristics of the repair were examined by assessing the macro- and microstructure, residual stresses, microhardness, tensile and fatigue properties, and static and dynamic failure mechanisms.


2020 ◽  
Vol 321 ◽  
pp. 03014
Author(s):  
Dmytro Kovalchuk ◽  
Orest Ivasishin ◽  
Dmytro Savvakin

Ti-6Al-4V articles were produced with advanced additive manufacturing technology of Direct Energy Deposition (DED) type using profile electron beam and wire as feedstock material. The key distinctive feature of this additive manufacturing process is the applying of the hollow conical electron beam generated by low-voltage (<20kV) gas-discharge EB gun for heating and melting of the substrate and co-axially fed wire. Such configuration ensures precisely controllable liquid metal transfer from the wire end to the substrate, specific temperature gradients at the fusion area and heat flow from liquid metal pool. Such conditions of heating, melting and cooling during 3D manufacturing processing provide the ability for controllable microstructure formation, including grain size and material texture. Influence of processing parameters and cooling conditions on crystallization, grain formation and intragrain structure of solidified material is discussed. Optimization of processing parameters allowed production of 3D Ti-6Al- 4V articles with isotropic microstructure and mechanical properties which met standard requirements for Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document