scholarly journals “Electrical wind” in CO2–laser mixtures at superatmospheric pressures

2021 ◽  
Vol 2064 (1) ◽  
pp. 012026
Author(s):  
B A Kozlov ◽  
D S Makhanko

Abstract This article presents the results of “electrical wind” investigations in CO2–laser mixtures at superatmospheric (1–12 atm) pressures. It is established that for a fixed value of the unipolar corona discharge current, the gas flow velocity does not depend on the pressure, but is determined by the chemical composition of the working mixture. The maximum values of the “electrical wind” velocity are achieved in carbon dioxide and molecular nitrogen and their values are 3.2 and 2.9 ms−1. In typical laser mixtures CO2:N2:He = 1:1:1 – 1:1:3 the velocity of the “electrical wind ” are in the range from 2.5 to 1.5 ms−.

Author(s):  
Xiao Yu ◽  
Zhenyi Yang ◽  
Shui Yu ◽  
Mark Ives ◽  
Ming Zheng

With the advancement of spark ignition engines, lean or diluted in-cylinder charge is often used to improve the engine performance. Enhanced in-cylinder charge motion is widely applied under such conditions to promote the flame propagation, which raise challenges for the spark ignition system. In this work, the spark discharging process is investigated under different flow conditions via both optical diagnosis and electrical measurement. Results show that the spark plasma channel is stretched under flow conditions. A higher discharge current can maintain the stretched spark plasma for a longer duration. Re-strikes are observed when the spark plasma is stretched to a certain extent. The frequency of re-strikes increases with increased flow velocity and decreased discharge current level. The discharge duration reduces with the increased flow velocity. The effects of gas flow on the ignition and flame kernel development are studied in a constant volume optical combustion chamber with premixed lean and stoichiometric methane air mixture. Two spark strategies with low and high discharge current are used for the ignition. The flame propagation speed of both lean and stoichiometric mixtures increases with the increased gas flow velocity. A higher discharge current level retains a more stable spark channel and improves the flame kernel development for both lean and stoichiometric conditions, especially under the higher gas flow velocity of 20 m/s.


2021 ◽  
Vol 67 (2) ◽  
pp. 216-221
Author(s):  
A. D. Mansfeld ◽  
G. P. Volkov ◽  
R. V. Belyaev ◽  
A. G. Sanin ◽  
P. R. Gromov ◽  
...  

2017 ◽  
pp. 80-83
Author(s):  
E. V. Panikarovskii ◽  
V. V. Panikarovskii

In the case of self-kill of wells, the gas flow velocity in the lifting column is not sufficient for carrying to the surface of the liquid, accumulated in the wellbore. To remove liquid from the bottom of wells, solid and liquid surfactants are used. As a result of conducted studies of surfactant compositions, the components of surfactant solutions were chosen to remove liquid from the bottom of wells.


Author(s):  
David C. Deisenroth ◽  
Jorge Neira ◽  
Jordan Weaver ◽  
Ho Yeung

Abstract In laser powder bed fusion metal additive manufacturing, insufficient shield gas flow allows accumulation of condensate and ejecta above the build plane and in the beam path. These process byproducts are associated with beam obstruction, attenuation, and thermal lensing, which then lead to lack of fusion and other defects. Furthermore, lack of gas flow can allow excessive amounts of ejecta to redeposit onto the build surface or powder bed, causing further part defects. The current investigation was a preliminary study on how gas flow velocity and direction affect laser delivery to a bare substrate of Nickel Alloy 625 (IN625) in the National Institute of Standards and Technology (NIST) Additive Manufacturing Metrology Testbed (AMMT). Melt tracks were formed under several gas flow speeds, gas flow directions, and energy densities. The tracks were then cross-sectioned and measured. The melt track aspect ratio and aspect ratio coefficient of variation (CV) were reported as a function of gas flow speed and direction. It was found that a mean gas flow velocity of 6.7 m/s from a nozzle 6.35 mm in diameter was sufficient to reduce meltpool aspect ratio CV to less than 15 %. Real-time inline hotspot area and its CV were evaluated as a process monitoring signature for identifying poor laser delivery due to inadequate gas flow. It was found that inline hotspot size could be used to distinguish between conduction mode and transition mode processes, but became diminishingly sensitive as applied laser energy density increased toward keyhole mode. Increased hotspot size CV (associated with inadequate gas flow) was associated with an increased meltpool aspect ratio CV. Finally, it was found that use of the inline hotspot CV showed a bias toward higher CV values when the laser was scanned nominally toward the gas flow, which indicates that this bias must be considered in order to use hotspot area CV as a process monitoring signature. This study concludes that gas flow speed and direction have important ramifications for both laser delivery and process monitoring.


2019 ◽  
Vol 38 (2019) ◽  
pp. 1-7
Author(s):  
Feng-guang Li ◽  
Jian-liang Zhang

AbstractIn this paper, a blast furnace gas flow distribution model with variable furnace structure was founded based on CFD (computational fluid dynamics) theory, and the gas velocity distribution near the surface of the copper staves in different areas of the BF is calculated under different conditions of variational structure parameters like Bosh angle, shaft angle, and the newly proposed “equivalent Bosh angle.” Based on the calculation, the influence rule of the BF structure on the service life of copper stave and the corresponding operation measures were obtained. The result shows that the increase of the Bosh angle and the decrease of the shaft angle will incur increasing of the gas flow velocity near the surface of the copper staves, which is harmful to the cooling stave life; the variation of the equivalent Bosh angle has a most significant influence on the cooling stave life, and the increase of the equivalent Bosh angle will cause a sharp increase of the gas flow velocity, which will damage the copper staves seriously; adopting long tuyeres and minishing the equivalent Bosh angle will reduce the washing action of the gas flow and ensure the stability of slag hanging to achieve a long service life of copper staves.


1991 ◽  
Vol 34 (11) ◽  
pp. 1155-1158
Author(s):  
S. Z. Shkundin ◽  
V. V. Lashin ◽  
A. V. Likhachev

Sign in / Sign up

Export Citation Format

Share Document