scholarly journals Effect of competitive acoustic environments on speech intelligibility

2021 ◽  
Vol 2069 (1) ◽  
pp. 012162
Author(s):  
G E Puglisi ◽  
A Warzybok ◽  
A Astolfi ◽  
B Kollmeier

Abstract Excessive noise and reverberation times degrade listening abilities in everyday life environments. This is particularly true for school settings. Most classrooms in Italy are settled in historical buildings that generate competitive acoustic environments. So far, few studies investigated the effect of real acoustics on speech intelligibility and on the spatial release from masking, focusing more on laboratory conditions. Also, the effect of noise on speech intelligibility was widely investigated considering its energetic rather than its informational content. Therefore, a study involving normal hearing adults was performed presenting listening tests via headphone and considering the competitive real acoustics of two primary-school classrooms with reverberation time of 0.4 s and 3.1 s, respectively. The main objective was the investigation of the effect of reverberation and noise on the spatial release from masking to help the design of learning environments. Binaural room impulse responses were acquired, with noise sources at different azimuths from the listener’s head. The spatial release from masking was significantly affected by noise type and reverberation. Longer reverberation times brought to worst speech intelligibility, with speech recognition thresholds higher by 6 dB on average. Noise with an informational content was detrimental by 7 dB with respect to an energetic noise.

2017 ◽  
Vol 26 (4) ◽  
pp. 507-518 ◽  
Author(s):  
Kasey M. Jakien ◽  
Sean D. Kampel ◽  
Meghan M. Stansell ◽  
Frederick J. Gallun

Purpose To evaluate the test–retest reliability of a headphone-based spatial release from a masking task with two maskers (referred to here as the SR2) and to describe its relationship to the same test done over loudspeakers in an anechoic chamber (the SR2A). We explore what thresholds tell us about certain populations (such as older individuals or individuals with hearing impairment) and discuss how the SR2 might be useful in the clinic. Method Fifty-four participants completed speech intelligibility tests in which a target phrase and two masking phrases from the Coordinate Response Measure corpus (Bolia, Nelson, Ericson, & Simpson, 2000) were presented either via earphones using a virtual spatial array or via loudspeakers in an anechoic chamber. For the SR2, the target sentence was always at 0° azimuth angle, and the maskers were either colocated at 0° or positioned at ± 45°. For the SR2A, the target was located at 0°, and the maskers were colocated or located at ± 15°, ± 30°, ± 45°, ± 90°, or ± 135°. Spatial release from masking was determined as the difference between thresholds in the colocated condition and each spatially separated condition. All participants completed the SR2 at least twice, and 29 of the individuals who completed the SR2 at least twice also participated in the SR2A. In a second experiment, 40 participants completed the SR2 8 times, and the changes in performance were evaluated as a function of test repetition. Results Mean thresholds were slightly better on the SR2 after the first repetition but were consistent across 8 subsequent testing sessions. Performance was consistent for the SR2A, regardless of the number of times testing was repeated. The SR2, which simulates 45° separations of target and maskers, produced spatially separated thresholds that were similar to thresholds obtained with 30° of separation in the anechoic chamber. Over headphones and in the anechoic chamber, pure-tone average was a strong predictor of spatial release, whereas age only reached significance for colocated conditions. Conclusions The SR2 is a reliable and effective method of testing spatial release from masking, suitable for screening abnormal listening abilities and for tracking rehabilitation over time. Future work should focus on developing and validating rapid, automated testing to identify the ability of listeners to benefit from high-frequency amplification, smaller spatial separations, and larger spectral differences among talkers.


Author(s):  
Anja Kurz ◽  
Maren Zanzinger ◽  
Rudolf Hagen ◽  
Kristen Rak

Abstract Objective Cochlear implantation has become a well-accepted treatment option for people with single-sided deafness (SSD) and has become a clinical standard in many countries. A cochlear implant (CI) is the only device which restores binaural hearing. The effect of microphone directionality (MD) settings has been investigated in other CI indication groups, but its impact on speech perception in noise has not been established in CI users with SSD. The focus of this investigation was, therefore, to assess binaural hearing effects using different MD settings in CI users with SSD. Methods Twenty-nine experienced CI users with SSD were recruited to determine speech reception thresholds with varying target and noise sources to define binaural effects (head shadow, squelch, summation, and spatial release from masking), sound localization, and sound quality using the SSQ12 and HISQUI19 questionnaires. Outcome measures included the MD settings “natural”, “adaptive”, and “omnidirectional”. Results The 29 participants involved in the study were divided into two groups: 11 SONNET users and 18 OPUS 2/RONDO users. In both groups, a significant head shadow effect of 7.4–9.2 dB was achieved with the CI. The MD setting “adaptive” provided a significant head shadow effect of 9.2 dB, a squelch effect of 0.9 dB, and spatial release from masking of 7.6 dB in the SONNET group. No significant summation effect could be determined in either group with CI. Outcomes with the omnidirectional setting were not significantly different between groups. For both groups, localization improved significantly when the CI was activated and was best when the omnidirectional setting was used. The groups’ sound quality scores did not significantly differ. Conclusions Adaptive directional microphone settings improve speech perception and binaural hearing abilities in CI users with SSD. Binaural effect measures are valuable to quantify the benefit of CI use, especially in this indication group.


2019 ◽  
Author(s):  
Ysabel Domingo ◽  
Emma Holmes ◽  
Ewan Macpherson ◽  
Ingrid Johnsrude

The ability to segregate simultaneous speech streams is crucial for successful communication. Recent studies have demonstrated that participants can report 10–20% more words spoken by naturally familiar (e.g., friends or spouses) than unfamiliar talkers in two-voice mixtures. This benefit is commensurate with one of the largest benefits to speech intelligibility currently known—that gained by spatially separating two talkers. However, because of differences in the methods of these previous studies, the relative benefits of spatial separation and voice familiarity are unclear. Here, we directly compared the familiar-voice benefit and spatial release from masking, and examined if and how these two cues interact with one another. We recorded talkers speaking sentences from a published closed-set “matrix” task and then presented listeners with three different sentences played simultaneously. Each target sentence was played at 0° azimuth, and two masker sentences were symmetrically separated about the target. On average, participants reported 10–30% more words correctly when the target sentence was spoken in a familiar than unfamiliar voice (collapsed over spatial separation conditions); we found that participants gain a similar benefit from a familiar target as when an unfamiliar voice is separated from two symmetrical maskers by approximately 15° azimuth.


2003 ◽  
Vol 14 (09) ◽  
pp. 518-524 ◽  
Author(s):  
D.P. Phillips ◽  
B.K. Vigneault-MacLean ◽  
S.E. Boehnke ◽  
S.E. Hall

The Hearing-in-Noise Test (HINT) is able to measure the benefit to speech intelligibility in noise conferred when the noise masker is displaced 90 degrees in eccentricity from a speech source located at zero degrees azimuth. Both psychoacoustic and neurophysiological data suggest that the perceptual benefit of the 90-degree azimuth separation would be greatest if the speech and noise were presented in different acoustic hemifields, and would be smallest if the two sources were in the same acoustic hemifield. The present study tested this hypothesis directly in ten normal-hearing adult listeners. Using the HINT stimuli, we confirmed the hypothesis. Release from masking scores averaged 8.61 dB for "between-hemifield" conditions, 6.05 dB for HINT conditions, and 1.27 dB for "within-hemifield" conditions, even though all stimulus configurations retained a 90-degree angular separation of speech and noise. These data indicate that absolute separation of speech and noise alone is insufficient to guarantee a significant release from masking, and they suggest that what matters is the location of the stimulus elements relative to the left and right spatial perceptual channels. La Prueba de Audición en Ruido (HINT) permite medir los beneficios para la inteligibilidad del lenguaje en ruido que ocurre cuando el enmascarador de ruido es desplazado 90 grados de la fuente de lenguaje localizada a 0 grados azimut. Tanto los datos psicoacústicos como neurofisiológicos sugieren que el beneficio perceptual de la separación de 90 grados azimut sería mayor si el lenguaje y el ruido fueran presentados en diferentes hemicampos acústicos, y sería menor si las dos fuentes estuvieran en el mismo hemicampo. El presente estudio evaluó esta hipótesis directamente en diez sujetos adultos normo-oyentes. Utilizando los estímulos del HINT, confirmamos la hipótesis. Los puntajes de liberación del enmascaramiento promediaron 8.61 dB para las condiciones de "entre-hemicampos". 6.05 dB para las condiciones del HINT, y 1.27 para las condiciones "dentro del hemicampo", a pesar de que la configuración de todos los estímulos retuvo una separación angular de 90 grados entre el lenguaje y el ruido. Estos datos indican que la separación absoluta del ruido y lenguaje solos es insuficiente para garantizar una liberación significativa del enmascaramiento, y sugieren que lo que importa es la localización de los elementos del estímulo con relación a los canales perceptuales espaciales derecho e izquierdo.


Sign in / Sign up

Export Citation Format

Share Document