scholarly journals Community cooling infrastructure from waste heat among diverse building types in Rourkela Steel Township, India

2021 ◽  
Vol 2069 (1) ◽  
pp. 012218
Author(s):  
R Sen ◽  
E Teitelbaum ◽  
F Meggers

Abstract Urban building energy modeling is an important field in the current decade due to the rising rate of urbanization, specifically in developing countries. The UN environment is promoting urban level space cooling approaches in the upcoming smart cities of India. Rourkela is a tier-2 steel township included within the ‘smart city’ mission in India and houses one of the largest Steel Plants of India, classified under Koppen Aw tropical climate zone. However it experiences extreme heat stress in the dry summer season before the onset of monsoons. The given study proposes an alternative cooling scenario utilizing waste heat from the rolling mill with which cooling in the range of 700-900 tons of nearly zero energy cooling can be made available in the surrounding areas, otherwise catered by an energy intensive cooling system reporting a COP of 2.45. This study can be further expanded to provide cooling to the nearby residential communities keeping the steel plant area as center point for community cooling infrastructure provision.

Author(s):  
Fady Atallah ◽  
Srikanth Madala ◽  
Suresh B. Sadineni ◽  
Robert F. Boehm

In recent years, due to the increased fossil fuel costs and environmental concerns, there has been a renewed interest in absorption cooling (using low-grade heat source) systems for refrigeration and space cooling applications. Although, the stand-alone coefficient of performance (COP) is a concern with such systems, absorption cooling can be a useful add-on that improves the overall efficiency of conventional vapor compression cooling cycle. A local company based in Las Vegas which is involved in the development of advanced HVAC technologies, has developed a natural gas fueled internal combustion (IC) engine driven heat pump. This system recovers the rejected heat from the IC engine during the heating cycle, thus, increasing the heat delivered and improving the system’s overall efficiency. However, during the cooling cycle the rejected heat is dissipated to the ambient air through radiators. The overall efficiency of the system can be improved if the heat rejected during the cooling cycle can be recovered and used for space cooling or refrigeration applications. In this study, a vapor compression refrigeration system coupled with an absorption cooling system is simulated using MATLAB. The vapor compression system is driven by a natural gas fueled IC engine and the waste heat from the engine is used to drive the absorption cooling system. The waste heat is recovered both from gas exhaust and engine cooling systems. The developed simulation model is used to find the transients of both the vapor absorption and compressions systems for varied cooling demands. Important parameters such as coolant temperature and exhaust gas temperature are obtained from experimental data. This paper presents the most efficient load distribution between the vapor compression and absorption cooling systems.


2014 ◽  
Vol 54 (6) ◽  
pp. 414-419
Author(s):  
Julius Lisuch ◽  
Dusan Dorcak ◽  
Jan Spisak

<pre><pre>Significant proportion of the total energy expenditure for the heat treatment of raw materials are heat losses through the shell of rotary furnace. Currently, the waste heat is not used in any way and escapes into the environment. Controlled cooling system for rotary furnace shell (<span>CCSRF</span>) is a new solution integrated into the technological process aimed at reducing the heat loss of the furnace shell. Based on simulations and experiments carried out was demonstrated a significant effect of controlled cooling shell to the rotary furnace work. The proposed solution is cost-effective and operationally undemanding.</pre></pre>


2012 ◽  
Vol 25 (4) ◽  
pp. 566-574 ◽  
Author(s):  
Yunze LI ◽  
Mingmin LI ◽  
Kok Meng LEE

2015 ◽  
Vol 90 ◽  
pp. 820-830 ◽  
Author(s):  
Tao Cao ◽  
Hoseong Lee ◽  
Yunho Hwang ◽  
Reinhard Radermacher ◽  
Ho-Hwan Chun

Author(s):  
Allison Gray ◽  
Robert Boehm ◽  
Kenneth W. Stone

Cooling of photovoltaic cells under high intensity solar irradiance is a major concern when designing concentrating photovoltaic systems. The cell temperature will increase if the waste heat is not removed and the cell voltage/power will decrease with increasing cell temperature. This paper presents an analysis of the passive cooling system on the Amonix high concentration photovoltaic system (HCPV). The concentrator geometry is described. A model of the HCPV passive cooling system was made using Gambit. Assumptions are discussed that were made to create the numerical model based on the actual system, the methods for drawing the model is discussed, and images of the model are shown. Fluent was used to compute the numerical results. In addition to the theoretical results that were computed, measurements were made on a system in the field. These data are compared to the theoretical data and differences are calculated. Theoretical conditions that were studied included uniform cell temperatures and worst case weather scenarios, i.e., no wind, high ambient conditions, and high solar irradiance. The performance of the Amonix high concentrating system could be improved if more waste heat were removed from the cell. Now that a theoretical model has been developed and verified, it will be used to investigate different designs and material for increasing the cooling of the system.


2000 ◽  
Author(s):  
Jens Møller Andersen

Abstract Heat integration with absorption heat pumps requires investigation of many types of plant designs. In this article, it is concluded that in many cases high temperature absorption systems for heat recovery are more economically feasible than absorption systems for cooling purposes. The conclusion is based on a project where the scope was to investigate technical and economical possibilities for heat integration of an absorption heat pump in a milk powder plant. The first idea behind the project was to use the waste heat from the rejected air to drive an absorption cooling system to reduce the electricity consumption for cooling proposes. The model of the plant was based on simulations as a background for a time averaged COP model. It was concluded that an absorption system for generating low temperature steam is more feasible.


2017 ◽  
pp. 527-549 ◽  
Author(s):  
H. Patricia McKenna

The purpose of this chapter is to develop and explore the ambient urbanizing concept as a way to shed light on what happens at the urban level when people become more aware and attuned to smartness and ambience in everyday city spaces. The research design for this work includes a case study approach and multiple methods of quantitative and qualitative data collection and analysis. In parallel with this study, anecdotal evidence gathered from individuals across the city through informal individual and group discussions enabled further analysis, comparison, and triangulation of data. This chapter makes a contribution to the research literature across multiple domains; sheds light on the emerging relationships of awareness in the people – technologies – cities dynamic, highlighting the critical role of people, in their everyday urban activities, interactions, and experiences; and offers a proposed ambient urbanizing framework for enriching spaces, things, and designs in smart cities.


2020 ◽  
Vol 145 ◽  
pp. 02062
Author(s):  
Canzong Zhou ◽  
Shuyi Chen ◽  
Wei Cui ◽  
Zhengmao Yao

According to the research, thermoelectricity generation can recycle the heat contained in the cooling system of internal combustion engine. This paper is about taking advantage of the feature in the huge temperature difference at about 560 °C which is formed between high-temperature engine and LNG (Liquefied Natural Gas) in low temperature and the ability that LNG provides semiconductor with thermoelectric conversion material so as to produce the maximum output voltage in low temperature. We take advantage of lead telluride materials that adapt to the high temperature environment and bismuth telluride materials that adapt to the low temperature environment, both of which forms a circuit and are designed as a thermoelectric power generation device. Also, we confirm the possibility of applying the device to cars.


Sign in / Sign up

Export Citation Format

Share Document