scholarly journals Classes of Dynamic Systems with Various Combinations of Multipliers in Their Reciprocal Polynomial Right Parts

2021 ◽  
Vol 2090 (1) ◽  
pp. 012095
Author(s):  
I A Andreeva

Abstract A family of differential dynamic systems is considered on a real plane of their phase variables x, y. The main common feature of systems under consideration is: every particular system includes equations with polynomial right parts of the third order in one equation and of the second order in another one. These polynomials are mutually reciprocal, i.e., their decompositions into forms of lower orders do not contain common multipliers. The whole family of dynamic systems has been split into subfamilies according to the numbers of different reciprocal multipliers in the decompositions and depending on an order of sequence of different roots of polynomials. Every subfamily has been studied in a Poincare circle using Poincare mappings. A plan of the investigation for each selected subfamily of dynamic systems includes the following steps. We determine a list of singular points of systems of the fixed subfamily in a Poincare circle. For every singular point in the list, we use the notions of a saddle (S) and node (N) bundles of adjacent to this point semi trajectories, of a separatrix of the singular point, and of a topo dynamical type of the singular point (its TD – type). Further we split the family under consideration to subfamilies of different hierarchical levels with proper numbers. For every chosen subfamily we reveal topo dynamical types of singular points and separatrices of them. We investigate the behavior of separatrices for all singular points of systems belonging to the chosen subfamily. Very important are: a question of a uniqueness of a continuation of every given separatrix from a small neighborhood of a singular point to all the lengths of this separatrix, as well as a question of a mutual arrangement of all separatrices in a Poincare circle Ω. We answer these questions for all subfamilies of studied systems. The presented work is devoted to the original study. The main task of the work is to depict and describe all different in the topological meaning phase portraits in a Poincare circle, possible for the dynamical differential systems belonging to a broad family under consideration, and to its numerical subfamilies of different hierarchical levels. This is a theoretical work, but due to special research methods it may be useful for applied studies of dynamic systems with polynomial right parts. Author hopes that this work may be interesting and useful for researchers as well as for students and postgraduates. As a result, we describe and depict phase portraits of dynamic systems of a taken family and outline the criteria of every portrait appearance.

2020 ◽  
Vol 313 ◽  
pp. 00014
Author(s):  
Irina Andreeva

Dynamic systems play a key role in various directions of modern science and engineering, such as the mathematical modeling of physical processes, the broad spectrum of complicated and pressing problems of civil engineering, for example, in the analysis of seismic stability of constructions and buildings, in the fundamental studies of computing and producing systems, of biological and sociological events. A researcher uses a dynamic system as a mathematical apparatus to study some phenomena and conditions, under which any statistical events are not important and may be disregarded. The main task of the theory of dynamic systems is to study curves, which differential equations of this system define. During such a research, firstly we need to split a dynamic system’s phase space into trajectories. Secondly, we investigate a limit behavior of trajectories. This research stage is to reveal equilibrium positions and make their classification. Also, here we find and investigate sinks and sources of the system’s phase flow. As a result, we obtain a full set of phase portraits, possible for a taken family of differential dynamic systems, which describe a behavior of some process. Namely polynomial dynamic systems often play a role of practical mathematical models hence their investigation has significant interest. This paper represents the original study of a broad family of differential dynamic systems having reciprocal polynomial right parts, and describes especially developed research methods, useful for a wide spectrum of applications.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2585
Author(s):  
Yuri S. Popkov

Controlled dynamic systems with an entropy operator (DSEO) are considered. Mathematical models of such systems were used to study the dynamic properties in demo-economic systems, the spatiotemporal evolution of traffic flows, recurrent procedures for restoring images from projections, etc. Three problems of the study of DSEO are considered: the existence and uniqueness of singular points and the influence of control on them; stability in “large” of the singular points; and optimization of program control with linear feedback. The theorems of existence, uniqueness, and localization of singular points are proved using the properties of equations with monotone operators and the method of linear majorants of the entropy operator. The theorem on asymptotic stability of the DSEO in “large” is proven using differential inequalities. Methods for the synthesis of quasi-optimal program control and linear feedback control with integral quadratic quality functional, and ensuring the existence of a nonzero equilibrium, were developed. A recursive method for solving the integral equations of the DSEO using the multidimensional functional power series and the multidimensional Laplace transform was developed. The problem of managing regional foreign direct investment is considered, the distribution of flows is modeled by the corresponding DSEO. It is shown that linear feedback control is a more effective tool than program control.


2019 ◽  
Vol 33 (30) ◽  
pp. 1950372
Author(s):  
Mei-Xia Chu ◽  
Bo Tian ◽  
Hui-Min Yin ◽  
Su-Su Chen ◽  
Ze Zhang

Circuitry and chemistry are applied in such fields as communication engineering and automatic control, environmental protection and material/medicine sciences, respectively. Biology works as the basis of agriculture and medicine. Studied in this paper is a nonlinear space-fractional Kolmogorov–Petrovskii–Piskunov equation for the electronic circuitry, chemical kinetics, population dynamics, neurophysiology, population genetics, mutant gene propagation, nerve impulses transmission or molecular crossbridge property in living muscles. Kink soliton solutions are obtained via the fractional sub-equation method. Change of the fractional order does not affect the amplitudes of the kink solitons. Via the traveling transformation, the original equation is transformed into the ordinary differential equation, while we obtain two equivalent two-dimensional planar dynamic systems of that ordinary differential equation. According to the bifurcation and qualitative considerations of the planar dynamic systems, we display the corresponding phase portraits when the traveling-wave velocity is nonzero or zero. Nonlinear periodic waves of the original equation are obtained when the traveling-wave velocity is zero.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Yongqiang Fu ◽  
Yingying Shan

AbstractIn this paper, we study the problem of removable isolated singularities for elliptic equations with variable exponents. We give a sufficient condition for removability of the isolated singular point for the equations in


2020 ◽  
Vol 10 (11) ◽  
pp. 3868
Author(s):  
Jiong Chen ◽  
Heng Zhao ◽  
Zhicheng Cao ◽  
Fei Guo ◽  
Liaojun Pang

As one of the most important and obvious global features for fingerprints, the singular point plays an essential role in fingerprint registration and fingerprint classification. To date, the singular point detection methods in the literature can be generally divided into two categories: methods based on traditional digital image processing and those on deep learning. Generally speaking, the former requires a high-precision fingerprint orientation field for singular point detection, while the latter just needs the original fingerprint image without preprocessing. Unfortunately, detection rates of these existing methods, either of the two categories above, are still unsatisfactory, especially for the low-quality fingerprint. Therefore, regarding singular point detection as a semantic segmentation of the small singular point area completely and directly, we propose a new customized convolutional neural network called SinNet for segmenting the accurate singular point area, followed by a simple and fast post-processing to locate the singular points quickly. The performance evaluation conducted on the publicly Singular Points Detection Competition 2010 (SPD2010) dataset confirms that the proposed method works best from the perspective of overall indexes. Especially, compared with the state-of-art algorithms, our proposal achieves an increase of 10% in the percentage of correctly detected fingerprints and more than 16% in the core detection rate.


2010 ◽  
Vol 133-134 ◽  
pp. 1107-1112 ◽  
Author(s):  
Giovanna A. Massari ◽  
Mariapaola Riggio ◽  
Francesco Gadotti

Historical timber structures can be considered a paradigm of the “diversity”, which characterizes each individual artefact or part of it and represents a mark of heritage authenticity. In this paper, the term “diversity” indicates both the “variability” of the structure at its different hierarchical levels, and the “variation” in the typological form. Recognising, capturing and interpreting these peculiarities have been a main task, in the restoration of a timber roof in the Thun Castle (Trentino, Italy). After an exceptional snowfall the roof over the Cannons Loggia partially collapsed. In order to properly investigate the causes of the damages occurred to the structure and provide the necessary information for the intervention planning, a throughout investigation campaign was carried out. The adopted approach to repair aims at respecting the roof “diversity”, which is at the same time the mark of its originality and the cause of its deficiencies, relying on reversible and minimal interventions.


The paper explores the potential of the homogeneous relaxation model (HRM) as a basis for the description of adiabatic, one-dimensional, two-phase flows. To this end, a rigorous mathematical analysis highlights the similarities and differences between this and the homogeneous equilibrium model (HEM) emphasizing the physical and qualitative aspects of the problem. Special attention is placed on a study of dispersion, characteristics, choking and shock waves. The most essential features are discovered with reference to the appropriate and convenient phase space Ω for HRM, which consists of pressure P , enthalpy h , dryness fraction x , velocity w , and length coordinate z . The geometric properties of the phase space Ω enable us to sketch the topological pattern of all solutions of the model. The study of choking is intimately connected with the occurrence of singular points of the set of simultaneous first-order differential equations of the model. The very powerful centre manifold theorem allows us to reduce the study of singular points to a two-dimensional plane Π , which is tangent to the solutions at a singular point, and so to demonstrate that only three singular-point patterns can appear (excepting degenerate cases), namely saddle points, nodal points and spiral points. The analysis reveals the existence of two limiting velocities of wave propagation, the frozen velocity a f and the equilibrium velocity a e . The critical velocity of choking is the frozen speed of sound. The analysis proves unequivocally that transition from ω < a f to w > a f can take place only via a singular point. Such a condition can also be attained at the end of a channel. The paper concludes with a short discussion of normal, fully dispersed and partly dispersed shock waves.


Sign in / Sign up

Export Citation Format

Share Document