scholarly journals An impedance approach to the response of matter

2021 ◽  
Vol 2090 (1) ◽  
pp. 012105
Author(s):  
S L Vesely ◽  
C A Dolci ◽  
SR Dolci

Abstract At the dawn of the research on waveguides the propagation by electrical conduction through transmission lines was compared with the general transmission theory of plane electromagnetic waves. After the invention of lasers we wonder whether the impedance concept can allow a seamless shift from the geometric rendering of received electromagnetic signals to the understanding of simple arguments on power transfer. Perhaps, the impedance concept could help noticing the occurrence of radiation-matter interactions and give hints as to how some phenomena could be enhanced by exposing matter to specific non-ionizing radiations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramesh K. Pokharel ◽  
Adel Barakat ◽  
Shimaa Alshhawy ◽  
Kuniaki Yoshitomi ◽  
Costas Sarris

AbstractConventional resonant inductive coupling wireless power transfer (WPT) systems encounter performance degradation while energizing biomedical implants. This degradation results from the dielectric and conductive characteristics of the tissue, which cause increased radiation and conduction losses, respectively. Moreover, the proximity of a resonator to the high permittivity tissue causes a change in its operating frequency if misalignment occurs. In this report, we propose a metamaterial inspired geometry with near-zero permeability property to overcome these mentioned problems. This metamaterial inspired geometry is stacked split ring resonator metamaterial fed by a driving inductive loop and acts as a WPT transmitter for an in-tissue implanted WPT receiver. The presented demonstrations have confirmed that the proposed metamaterial inspired WPT system outperforms the conventional one. Also, the resonance frequency of the proposed metamaterial inspired TX is negligibly affected by the tissue characteristics, which is of great interest from the design and operation prospects. Furthermore, the proposed WPT system can be used with more than twice the input power of the conventional one while complying with the safety regulations of electromagnetic waves exposure.


Author(s):  
Dmytro Vovchuk ◽  
Serhii Haliuk ◽  
Leonid Politanskyy

In the paper the development of the components of communication means is considered based on the wire metastructures. This approach is novel and quite promising due to the metamaterials provides new opportunities for the radio engineering devices such as antennas, absorbers etc. First of all it makes possible decreasing of the dimensions of devices while the characteristics stay the same or better. Here the artificially created metastructure that consists of parallel metallic wires and characterizes by a negative electric permittivity was investigated. The possibility of broadband power transfer of electromagnetic waves was demonstrated. Also, at first time, the investigation of possible signal distortions due to wave propagation through the wire medium (WM) slab was performed via analyzing of spectral characteristics. The obtained results allow applying of WM to power transfer in wide frequency range (not only at frequencies of Fabry-Perot resonant) and enhancement of weak source propagation as well as to antennas constructions due to the absence of signal distortions. One of the promising applications of such structures is the possibility of realizing of flexible screens with nanometer thickness and high resolution.


1973 ◽  
Vol 11 (3) ◽  
pp. 109
Author(s):  
M.L. Chanana ◽  
S.R. Gupta

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 845 ◽  
Author(s):  
Alex Krasnok

Antennas are crucial elements for wireless technologies, communications and power transfer across the entire spectrum of electromagnetic waves, including radio, microwaves, THz and optics. In this paper, we review our recent achievements in two promising areas: coherently enhanced wireless power transfer (WPT) and superdirective dielectric antennas. We show that the concept of coherently enhanced WPT allows improvement of the antenna receiving efficiency by coherent excitation of the outcoupling waveguide with a backward propagating guided mode with a specific amplitude and phase. Antennas with the superdirectivity effect can increase the WPT system’s performance in another way, through tailoring of radiation diagram via engineering antenna multipoles excitation and interference of their radiation. We demonstrate a way to achieve the superdirectivity effect via higher-order multipoles excitation in a subwavelength high-index spherical dielectric resonator supporting electric and magnetic Mie multipoles. Thus, both types of antenna discussed here possess a coherent nature and can be used in modern intelligent antenna systems.


2018 ◽  
Vol 64 ◽  
pp. 05004
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower, and span is one of the most significant factors affecting passive interference. This paper uses the method of moments to carry out the passive interference calculations under normal circumstances, expounds the method of calculating the electromagnetic field of transmission line at the same time. And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Applying the approximate formula to calculate the formula for the span and critical distance between the observation point and the transmission line.


2018 ◽  
Vol 64 ◽  
pp. 05005
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower. This paper uses the method of moments to perform passive interference calculations under normal circumstances, And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Uses the approximate formula to inductive the formula for calculating height of tower and the protective distance.


Sign in / Sign up

Export Citation Format

Share Document