scholarly journals A benchmark study on the model-based estimation of the go-kart side-slip angle

2021 ◽  
Vol 2090 (1) ◽  
pp. 012156
Author(s):  
M D’Inverno ◽  
V M Arricale ◽  
A Zanardi ◽  
E Frazzoli ◽  
A Sakhnevych ◽  
...  

Abstract Nowadays, the active safety systems that control the dynamics of passenger cars usually rely on real-time monitoring of vehicle side-slip angle (VSA). The VSA can’t be measured directly on the production vehicles since it requires the employment of high-end and expensive instrumentation. To realiably overcome the VSA estimation problem, different model-based techniques can be adopted. The aim of this work is to compare the performance of different model-based state estimators, evaluating both the estimation accuracy and the computational cost, required by each algorithm. To this purpose Extended Kalman Filters, Unscented Kalman Filters and Particle Filters have been implemented for the vehicle system under analysis. The physical representation of the process is represented by a single-track vehicle model adopting a simplified Pacejka tyre model. The results numerical results are then compared to the experimental data acquired within a specifically designed testing campaign, able to explore the entire vehicle dynamic range. To this aim an electric go-kart has been employed as a vehicle, equipped with steering wheel encoder, wheels angular speed encoder and IMU, while an S-motion has been adopted for the measurement of the experimental VSA quantity.

Author(s):  
Frank Harchut ◽  
Bernhard Mueller-Bessler

For vehicle dynamics applications, automotive companies are interested in determining the precise vehicle state in every driving situation in real-time. Part of the vehicle state is the side slip angle—the angle between the vehicle heading and its direction of movement. Currently the side slip angle is not measured in stock cars. To fill the gap this paper presents a basic proof of concept to measure the side slip angle using stock car components for sensing. These include an automotive camera and additional movement information provided in current production passenger cars. A basic computer vision algorithm allows determination of camera movement through the identification of static objects in consecutive camera images. In conjunction with a kinematical model, this data is then used to derive the car’s side slip angle. Finally, the method is evaluated on a real vehicle, with dGPS providing ground truth.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


2012 ◽  
Vol 215-216 ◽  
pp. 399-406
Author(s):  
Xiao Ming Du ◽  
Jin Dong Ren ◽  
Yong Qing Liu ◽  
Zhong Xian Chen ◽  
Shi Hai Li ◽  
...  

Ergonomics is an important validation content in vehicle product development. The traditional evaluation method of ergonomics adopts physical mockups or prototypes, which is very costly, and is inconvenient to modify, and usually cause prolonged development cycle-time. In this paper, in conjunction with enterprise’s requirements, an ergonomic validation equipment system, which has adjustable main parts, was developed. Firstly, requirements were analyzed, and target model cars ranges were determined, and ergonomic contents which can be validated using this equipment were clarified. The packaging characteristic of the passenger car was analyzed, and the reference fiducial marks system used for packaging design were determined. Based on the requirement of occupant accommodation, anthropometries of target population were statistically analyzed. By using revised SAE J1517 H-Point curves models, the drivers’ seating space was designed, as well as the requirement of the driver seat track travel. Based on the analysis of packaging data of passenger cars, and considering the possible changes, controls such as steering wheel, pedals, sticks, etc., were packaged.


Author(s):  
Zhihui Yang ◽  
Xiangyu Tang ◽  
Lijuan Zhang ◽  
Zhiling Yang

Human pose estimate can be used in action recognition, video surveillance and other fields, which has received a lot of attentions. Since the flexibility of human joints and environmental factors greatly influence pose estimation accuracy, related research is confronted with many challenges. In this paper, we incorporate the pyramid convolution and attention mechanism into the residual block, and introduce a hybrid structure model which synthetically applies the local and global information of the image for the analysis of keypoints detection. In addition, our improved structure model adopts grouped convolution, and the attention module used is lightweight, which will reduce the computational cost of the network. Simulation experiments based on the MS COCO human body keypoints detection data set show that, compared with the Simple Baseline model, our model is similar in parameters and GFLOPs (giga floating-point operations per second), but the performance is better on the detection of accuracy under the multi-person scenes.


Author(s):  
Ozan Temiz ◽  
Melih Cakmakci ◽  
Yildiray Yildiz

This paper presents an integrated fault-tolerant adaptive control allocation strategy for four wheel frive - four wheel steering ground vehicles to increase yaw stability. Conventionally, control of brakes, motors and steering angles are handled separately. In this study, these actuators are controlled simultaneously using an adaptive control allocation strategy. The overall structure consists of two steps: At the first level, virtual control input consisting of the desired traction force, the desired moment correction and the required lateral force correction to maintain driver’s intention are calculated based on the driver’s steering and throttle input and vehicle’s side slip angle. Then, the allocation module determines the traction forces at each wheel, front steering angle correction and rear steering wheel angle, based on the virtual control input. Proposed strategy is validated using a non-linear three degree of freedom reduced two-track vehicle model and results demonstrate that the vehicle can successfully follow the reference motion while protecting yaw stability, even in the cases of device failure and changed road conditions.


Author(s):  
Michael Nierla ◽  
Alexander Sutor ◽  
Stefan Johann Rupitsch ◽  
Manfred Kaltenbacher

Purpose This paper aims to present a novel stageless evaluation scheme for a vector Preisach model that exploits rotational operators for the description of vector hysteresis. It is meant to resolve the discretizational errors that arise during the application of the standard matrix-based implementation of Preisach-based models. Design/methodology/approach The newly developed evaluation uses a nested-list data structure. Together with an adapted form of the Everett function, it allows to represent both the additional rotational operator and the switching operator of the standard scalar Preisach model in a stageless fashion, i.e. without introducing discretization errors. Additionally, presented updating and simplification rules ensure the computational efficiency of the scheme. Findings A comparison between the stageless evaluation scheme and the commonly used matrix approach reveals not only an improvement in accuracy up to machine precision but, furthermore, a reduction of computational resources. Research limitations/implications The presented evaluation scheme is especially designed for a vector Preisach model, which is based on an additional rotational operator. A direct application to other vector Preisach models that do not rely on rotational operators is not intended. Nevertheless, the presented methodology allows an easy adaption to similar vector Preisach schemes that use modified setting rules for the rotational operator and/or the switching operator. Originality/value Prior to this contribution, the vector Preisach model based on rotational operators could only be evaluated using a matrix-based approach that works with discretized forms of rotational and switching operator. The presented evaluation scheme offers reduced computational cost at much higher accuracy. Therefore, it is of great interest for all users of the mentioned or similar vector Preisach models.


Sign in / Sign up

Export Citation Format

Share Document