scholarly journals Linear time-delay circuit and stabilizing controller

2021 ◽  
Vol 2091 (1) ◽  
pp. 012005
Author(s):  
Yuhao Cong ◽  
Yong Zhang ◽  
Guang-Da Hu

Abstract This paper is concerned with a linear time-delay circuit and its feedback control. We use electronic components such as resistors and capacitors to realize a linear time-delay system. The time-delays are generated by operational amplifiers and single-chip microcomputers. Based on the actual data measured by the oscilloscope, the parameters of the system are estimated using the least square method. Then a comparison study between the waveform image measured by the oscilloscope and the numerical simulation obtained by MATLAB verifies the effectiveness of the parameters estimations of the circuit system. Furthermore, the circuit system is unstable with a large time-delay, a feedback controller is designed to stabilize the circuit system using the optimization method in the literature. Finally, the experimental results in the linear time-delay circuit show the effectiveness of the optimization method.

2021 ◽  
Vol 2113 (1) ◽  
pp. 012022
Author(s):  
Chao Sun

Abstract In this paper, taking the feeding process as a form of impulsive and considering the time-delay in fermentation process. A robust model with the time-delay system as the control variable and the time-delay system as the constraint is established. In order to solve this optimal control problem, we have propose an particle swarm optimization method to solve problem. Numerical results show that 1,3-PD yield at the terminal time increases compared with the experimental result.


2019 ◽  
Vol 43 (7) ◽  
pp. 545-551
Author(s):  
Sang-Wook Bae ◽  
Jeonghyeon Yang ◽  
Jaesung Kwon ◽  
Sungwoong Choi ◽  
Beomsoo Kim

2012 ◽  
Vol 479-481 ◽  
pp. 688-693
Author(s):  
Zi Ying Wu ◽  
Kun Shi

In this paper a new time varying multivariate Prony (TVM-Prony) method is put forward to identify modal parameters of time varying (TV) multiple-degree-of-freedom systems from measured vibration responses. The proposed method is based on the classical Prony method that is often used to identify modal parameters of linear time invariant systems. The main advantage of the propose approach is that it can analyze multi-dimensional nonstationary signals simultaneously. A modified recursive least square method based on the traditional one is presented to determine the TV coefficient matrices of the multivariate parametric model established in the proposed method. The efficiency and accuracy of the identification approach is demonstrated by a numerical example, in which a TV mass-string system with three-degree-of-freedom is investigated. Satisfied results are obtained.


Sign in / Sign up

Export Citation Format

Share Document