scholarly journals A structure of the solenoidal 2D vector and 2-tensor fields given in a domain with the conformal Riemannian metric

2021 ◽  
Vol 2099 (1) ◽  
pp. 012041
Author(s):  
E Yu Derevtsov

Abstract The Helmholtz decomposition of a vector field on potential and solenoidal parts is much more natural from physical and geometric points of view then representations through the components of the vector in the Cartesian coordinate system of Euclidean space. The structure, representation through potentials and detailed decomposition for 2D symmetric m-tensor fields in a case of the Euclidean metric is known. For the Riemannian metrics similar results are known for vector fields. We investigate the properties of the solenoidal vector and 2-tensor two-dimensional fields given in the Riemannian domain with the conformal metric and establish the connections between the fields and metrics.

Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


2010 ◽  
Vol 07 (03) ◽  
pp. 485-503 ◽  
Author(s):  
P. ANIELLO ◽  
J. CLEMENTE-GALLARDO ◽  
G. MARMO ◽  
G. F. VOLKERT

The geometrical description of a Hilbert space associated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riemannian metric tensor while the imaginary part represents a symplectic two-form. The immersion of classical manifolds in the complex projective space associated with the Hilbert space allows to pull-back tensor fields related to previous ones, via the immersion map. This makes available, on these selected manifolds of states, methods of usual Riemannian and symplectic geometry. Here, we consider these pulled-back tensor fields when the immersed submanifold contains separable states or entangled states. Geometrical tensors are shown to encode some properties of these states. These results are not unrelated with criteria already available in the literature. We explicitly deal with some of these relations.


1968 ◽  
Vol 32 ◽  
pp. 67-108 ◽  
Author(s):  
Akihiko Morimoto

The purpose of the present paper is to study the prolongations of G-structures on a manifold M to its tangent bundle T(M), G being a Lie subgroup of GL(n,R) with n = dim M. Recently, K. Yano and S. Kobayashi [9] studied the prolongations of tensor fields on M to T(M) and they proposed the following question: Is it possible to associate with each G-structure on M a naturally induced G-structure on T(M), where G′ is a certain subgroup of GL(2n,R)? In this paper we give an answer to this question and we shall show that the prolongations of some special tensor fields by Yano-Kobayashi — for instance, the prolongations of almost complex structures — are derived naturally by our prolongations of the classical G-structures. On the other hand, S. Sasaki [5] studied a prolongation of Riemannian metrics on M to a Riemannian metric on T(M), while the prolongation of a (positive definite) Riemannian metric due to Yano-Kobayashi is always pseudo-Riemannian on T(M) but never Riemannian. We shall clarify the circumstances for this difference and give the reason why the one is positive definite Riemannian and the other is not.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


2017 ◽  
Vol 29 (03) ◽  
pp. 1750009 ◽  
Author(s):  
A. A. Zheltukhin

We discuss the gauge theory approach to consideration of the Nambu–Goldstone bosons as gauge and vector fields represented by the Cartan forms of spontaneously broken symmetries. The approach is generalized to describe the fundamental branes in terms of [Formula: see text]-dimensional worldvolume gauge and massless tensor fields consisting of the Nambu–Goldstone bosons associated with the spontaneously broken Poincaré symmetry of the [Formula: see text]-dimensional Minkowski space.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


2015 ◽  
Vol 15 (4) ◽  
pp. 515-530 ◽  
Author(s):  
Sergey Repin

AbstractThe paper is concerned with computable estimates of the distance between a vector-valued function in the Sobolev space$W^{1,\gamma }(\Omega ,\mathbb {R}^d)$(where${\gamma \in (1,+\infty )}$and Ω is a bounded Lipschitz domain in ℝd) and the subspace${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$containing all divergence-free (solenoidal) vector functions. Derivation of these estimates is closely related to the stability theorem that establishes existence of a bounded operator inverse to the operator${\operatorname{div}}$. The constant in the respective stability inequality arises in the estimates of the distance to the set${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$. In general, it is difficult to find a guaranteed and realistic upper bound of this global constant. We suggest a way to circumvent this difficulty by using weak (integral mean) solenoidality conditions and localized versions of the stability theorem. They are derived for the case where Ω is represented as a union of simple subdomains (overlapping or non-overlapping), for which estimates of the corresponding stability constants are known. These new versions of the stability theorem imply estimates of the distance to${S^{1,\gamma }(\Omega ,\mathbb {R}^d)}$that involve only local constants associated with subdomains. Finally, the estimates are used for deriving fully computable a posteriori estimates for problems in the theory of incompressible viscous fluids.


2006 ◽  
Vol 03 (04) ◽  
pp. 667-696 ◽  
Author(s):  
SOFIANE BOUARROUDJ

Let M be either a projective manifold (M, Π) or a pseudo-Riemannian manifold (M, g). We extend, intrinsically, the projective/conformal Schwarzian derivatives we have introduced recently, to the space of differential operators acting on symmetric contravariant tensor fields of any degree on M. As operators, we show that the projective/conformal Schwarzian derivatives depend only on the projective connection Π and the conformal class of the metric [g], respectively. Furthermore, we compute the first cohomology group of Vect(M) with coefficients in the space of symmetric contravariant tensor fields valued in the space of δ-densities, and we compute the corresponding sl(n + 1, ℝ)-relative cohomology group.


Sign in / Sign up

Export Citation Format

Share Document