scholarly journals Geometric Segmentation of 3D Scanned Surfaces for Multi-Sensor Coordinate Metrology

2021 ◽  
Vol 2101 (1) ◽  
pp. 012034
Author(s):  
Zhiqiang Yu ◽  
Mao Zhang ◽  
Jiaoyu Xiao

Abstract In modern industry, multi-sensor metrology methods are increasingly applied for fast and accurate 3D data acquisition. These method typically start with fast initial digitization by an optical digitizer, the obtained 3D data is analyzed to extract information to provide guidance for precise re-digitization and multi-sensor data fusion. The raw output measurement data from optical digitizer is dense unsorted points with defects. Therefore a new method of analysis has to be developed to process the data and prepare it for metrological verification. This article presents a novel algorithm to manage measured data from optical systems. A robust edge-points recognition method is proposed to segment edge-points from a 3D point cloud. The remaining point cloud is then divided into different patches by applying the Euclidean distance clustering. A simple RANSAC-based method is used to identify the feature of each segmented data patch and derive the parameters. Subsequently, a special region growing algorithm is designed to refine segment the under-segmentation regions. The proposed method is experimentally validated on various industrial components. Comparisons with state-of-the-art methods indicate that the proposed method for feature surface extraction is feasible and capable of achieving favorable performance and facilitating automation of industrial components.

2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Author(s):  
Alexander Bigalke ◽  
Lasse Hansen ◽  
Jasper Diesel ◽  
Mattias P. Heinrich

Abstract Purpose Body weight is a crucial parameter for patient-specific treatments, particularly in the context of proper drug dosage. Contactless weight estimation from visual sensor data constitutes a promising approach to overcome challenges arising in emergency situations. Machine learning-based methods have recently been shown to perform accurate weight estimation from point cloud data. The proposed methods, however, are designed for controlled conditions in terms of visibility and position of the patient, which limits their practical applicability. In this work, we aim to decouple accurate weight estimation from such specific conditions by predicting the weight of covered patients from voxelized point cloud data. Methods We propose a novel deep learning framework, which comprises two 3D CNN modules solving the given task in two separate steps. First, we train a 3D U-Net to virtually uncover the patient, i.e. to predict the patient’s volumetric surface without a cover. Second, the patient’s weight is predicted from this 3D volume by means of a 3D CNN architecture, which we optimized for weight regression. Results We evaluate our approach on a lying pose dataset (SLP) under two different cover conditions. The proposed framework considerably improves on the baseline model by up to $${16}{\%}$$ 16 % and reduces the gap between the accuracy of weight estimates for covered and uncovered patients by up to $${52}{\%}$$ 52 % . Conclusion We present a novel pipeline to estimate the weight of patients, which are covered by a blanket. Our approach relaxes the specific conditions that were required for accurate weight estimates by previous contactless methods and thus constitutes an important step towards fully automatic weight estimation in clinical practice.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4370
Author(s):  
Yongze Jin ◽  
Guo Xie ◽  
Yankai Li ◽  
Xiaohui Zhang ◽  
Ning Han ◽  
...  

In this paper, a fault diagnosis method is proposed based on multi-sensor fusion information for a single fault and composite fault of train braking systems. Firstly, the single mass model of the train brake is established based on operating environment. Then, the pre-allocation and linear-weighted summation criterion are proposed to fuse the monitoring data. Finally, based on the improved expectation maximization, the braking modes and braking parameters are identified, and the braking faults are diagnosed in real time. The simulation results show that the braking parameters of systems can be effectively identified, and the braking faults can be diagnosed accurately based on the identification results. Even if the monitoring data are missing or abnormal, compared with the maximum fusion, the accuracies of parameter identifications and fault diagnoses can still meet the needs of the actual systems, and the effectiveness and robustness of the method can be verified.


Author(s):  
Geoffrey Ho ◽  
Erin Kim ◽  
Shahzaib Khattak ◽  
Stephanie Penta ◽  
Tharmarasa Ratnasingham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document