scholarly journals Dual-band Rectangular Microstrip Patch Antenna for WiMAX Wireless Communications by Chemical Method

2021 ◽  
Vol 2114 (1) ◽  
pp. 012022
Author(s):  
Ali H. Khidhir

Abstract The rectangular microstrip patch antenna (RMPA) had designed and manufactured to operate in two working areas of the worldwide interoperability for microwave access (WiMAX) communication system. Flame retardant (FR-4) material had used for implementation, and the total antenna size was 57.22 × 1.6 mm3. The chemical method was used to implement the RMPA. The proposed antenna is capable of working at frequencies 2.51 GHz and 3.87 GHz experimentally. The results were -21.62 dB of return loss, and 50 MHz of bandwidth for the first frequency. Also, for second frequency was -20.01 dB of return loss, and 80 MHz of bandwidth.

Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2012 ◽  
Vol 1 (3) ◽  
pp. 205 ◽  
Author(s):  
Bimal Garg ◽  
Rahul Dev Verma ◽  
Ankit Samadhiya

In this work a dual band rectangular microstrip patch antenna along with the innovative metamaterial structure is proposed at a height of 3.2mm from the ground plane, which consists of a rectangular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of microstrip patch antennas and analyzing the dual band operation of proposed antenna. The proposed antenna is designed to resonate at 2.478GHz and 2.919GHz frequency. The impedance bandwidth of the patch antenna along with the proposed metamaterial structure at 2.478GHz is improved by 20.4MHz and return loss is reduced by 20.128dB. At 2.919GHz the impedance bandwidth is improved by 25.4MHz and return loss is reduced by 19.564dB. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW) has been employed. For simulation purpose CST-MWS Software has been used.


2017 ◽  
Vol 5 (10) ◽  
pp. 369-374
Author(s):  
SaimaTabassum Mansoori ◽  
Rahul Koshta

In this paper we are study about wireless antenna, which are used for wireless communication, the wireless communication system are having important role in service requirement. We are design and analyzed the Dual Band type H Shaped Rectangular Microstrip Patch Antenna and S- parameters are finding out using of various Substrate height (H).


2018 ◽  
Vol 7 (3) ◽  
pp. 1745 ◽  
Author(s):  
Hiwa Taha Sediq

This study describes the design of dual rectangular microstrip patch antenna for Wi-Fi and WiMAX wireless communication applications. In this work, the technique of design array patch antennas was used in order to improve the physical antenna characteristics for Wi-Fi and WiMAX device. As a result, the proposed technique causes to increase the gain and directivity of the antenna. Using this method also leads to enhance measurement bandwidth of antenna and some other antenna parameters as mentioned in this research paper. A dual-band microstrip patch antenna is developed for WiMAX/Wi-Fi wireless applications that operate at a minimum frequency of 2.4 GHz and a maximum frequency band of 3.5 GHz with its dimensions is L= 88.27 mm, W= 171.4 mm and h= 1.67 mm. The achieved parameters of dual patch array antenna for 2.4 GHz and 3.5 GHz are (gain of 8.25 dB, directivity of 10.4 dBi, measurement bandwidth of 65.82 MHz and measurement return loss of -20.86 dB) and (gain of 7.56 dB, directivity of 8.76 dBi, measurement bandwidth of 98.96 MHz and measurement return loss of -21.38 dB) respectively. 


2016 ◽  
Vol 6 (5) ◽  
pp. 35-44 ◽  
Author(s):  
Sheikh Dobir Hossain ◽  
◽  
K. M. Abdus Sobahan ◽  
Md. Khalid Hossain ◽  
Md. Masud Ahamed Akash ◽  
...  

Author(s):  
N Ismail ◽  
F Oktafiani ◽  
F Makmur ◽  
F D Ramadhan ◽  
M A Ramdhani ◽  
...  

2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liling Sun ◽  
Maowei He ◽  
Jingtao Hu ◽  
Yunlong Zhu ◽  
Hanning Chen

A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID) systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.


Sign in / Sign up

Export Citation Format

Share Document