scholarly journals Design of Rectangular Microstrip Patch Antenna Incorporated with Innovative Metamaterial Structure for Dual band operation and Amelioration in Patch Antenna Parameters with Negative � and ?

2012 ◽  
Vol 1 (3) ◽  
pp. 205 ◽  
Author(s):  
Bimal Garg ◽  
Rahul Dev Verma ◽  
Ankit Samadhiya

In this work a dual band rectangular microstrip patch antenna along with the innovative metamaterial structure is proposed at a height of 3.2mm from the ground plane, which consists of a rectangular geometry incorporated with c shaped structure. This work is mainly focused on increasing the potential parameters of microstrip patch antennas and analyzing the dual band operation of proposed antenna. The proposed antenna is designed to resonate at 2.478GHz and 2.919GHz frequency. The impedance bandwidth of the patch antenna along with the proposed metamaterial structure at 2.478GHz is improved by 20.4MHz and return loss is reduced by 20.128dB. At 2.919GHz the impedance bandwidth is improved by 25.4MHz and return loss is reduced by 19.564dB. For verifying that the proposed metamaterial structure possesses Negative values of Permeability and Permittivity within the operating frequency ranges, Nicolson-Ross-Weir method (NRW) has been employed. For simulation purpose CST-MWS Software has been used.

Author(s):  
Rahul Rajoria

In this work, The drawback of Patch Antenna was impedance bandwidth. For this purpose, Rectangular microstrip patch antenna loaded with metamaterial structure has been proposed for improving the bandwidth by using CST MICROWAVE STUDIO in this paper. The proposed antenna is designed at a height 3.2 from the ground plane by using CST MICROWAVE STUDIO. The bandwidth of Microstrip patch antenna is 12 .1MHz and return loss is -10.36 dB at a band.The bandwidth of desired antenna is increased up 61.7 MHz at 2.925 GHz and 27 MHz at 1.965 GHz. The return loss of proposed antenna is reduced up to -35.55db at 2.925 GHz and -29 db at 1.965 GHz. This proposed design has small size, easy to fabricate and better directivity.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2012 ◽  
Vol 1 (4) ◽  
pp. 335 ◽  
Author(s):  
Pramod Singhal ◽  
Bimal Garg

Communication applications require wide band and highly directive planner antennas. For such requirement this work deals with the analysis and simulation of a rectangular microstrip patch antenna loaded with INTERCONNECTED SRR metamaterial structure at a height of 3.2mm from the ground plane. The work also investigates the potential properties of the proposed metamaterial structure. The proposed Antenna is designed at a operating frequency of 2.75GHz to meet S-Band (2-4GHz) applications. By loading Interconnected SRR metamaterial structure with the rectangular patch antenna at a height of 3.2mm, the antennas bandwidth is found to be increased up to 378MHz and return loss is reduced to -42.2dB i.e. the potential properties like return loss, bandwidth, directivity and total efficiency of the proposed antenna increases to a great extent in comparison to the rectangular patch antenna alone. Double Negative properties of metamaterial have been proved by Nicolson-Ross-weir (NRW) method.


This paper presents the prototype and simulations of a compact rectangular microstrip patch antenna for ultra-wideband applications. The proposed antenna is printed on FR4 (Flame Retardant) substrate with relative permittivity of 4.4, dielectric loss tangent of 0.0024 and the dimensions of 57 × 25 × 1.57 mm3 . The radiating patch of the antenna is loaded with two rectangular stubs along its upper and lower edges and an equilateral triangular notch is truncated from the reduced ground plane to achieve optimum results in terms of bandwidth and reflection coefficient. It is fed along the centerline of symmetry by 50Ω microstrip feed line. The simulated return loss ( ) characteristics show that the proposed antenna has a capability of covering the wireless bands from 0.17GHz to 7.25GHz with impedance bandwidth of 7.08GHz and exhibits a peak gain of 5dB at 7.25GHz which is acceptable for UWB systems.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2014 ◽  
Vol 8 (2) ◽  
pp. 237-242 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a simple broadband planar monopole microstrip patch antenna with curved slot and partial ground plane. The proposed antenna is designed and fabricated on commercially available FR4 material with εr = 4.3 and 0.025 loss tangent. Bandwidth enhancement has been achieved by introducing a curved slot in the patch and optimizing the gap between the patch and the partial ground plane and the gap between the curved slot and the edge of the patch. Simulated peak gain of the proposed antenna is 4.8 dB. The impedance bandwidth (defined by 10 dB return loss) of the proposed antenna is 109% (2–6.8 GHz), which shows bandwidth enhancement of 26% as compared with simple monopole antenna. The antenna is useful for 2.4/5.2/5.8-GHz WLAN bands, 2.5/3.5/5.5-GHz WiMAX bands, and other wireless communication services. Measured results show good agreement with the simulated results. The proposed antenna details are described and measured/simulated results are elaborated.


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


2016 ◽  
Vol 4 (1) ◽  
pp. 43-45
Author(s):  
Vijay Dandotiya ◽  
Chetan Pathak

Author proposed a new design of meta-material to provide advancement into the factors of the rectangular microstrip patch antenna (RMPA) “Enhancement in RMPA parameters Rhombus Connected With Circle Meta material structure high using at 1.9GHz” As a rectangular microstrip patch antenna is designed at a height of 1.6mm & Left handed Meta material structure is designed at a height of 3.2mm from the ground plane by using CST-MWS software. The resonance frequency 1.9GHz of the designed antenna is using as a high frequency. This paper mainly worked on return loss. The Return loss of the proposed antenna reduced to -31,16dB & bandwidth is increased up to 41.9MHz. This antenna is small size, cheap, compact and easy to fabricate, and achieve good radiation characteristics with higher return loss. In this paper return loss basically defined as system becomes stable with reduced return loss.


2019 ◽  
Vol 7 (1) ◽  
pp. 01-03
Author(s):  
Srashti Sharma ◽  
Vandana Vikas Thakare

In the present paper a micro strip patch antenna with DGS for GSM application is designed and simulated at 1.8 GHz frequency. DGS is applied in the shape of circular rings on the ground plane. Without DGS the return loss is -12 dB, which is further improved to -22dB by applying DGS. The simulated results such as impedance, bandwidth, directivity, gain and radiation pattern are analyzed and compared for with and without DGS.


Sign in / Sign up

Export Citation Format

Share Document