scholarly journals Numerical simulation of segmented ratio in bismuth telluride and skutterudites for waste heat recovery

2021 ◽  
Vol 2120 (1) ◽  
pp. 012007
Author(s):  
K W Cheong ◽  
J H Lim

Abstract The thermoelectric performance of the segmented annular thermoelectric generators with the bismuth telluride and skutterudites has been investigated. The effect of the length ratio of the hot-segment leg to total length leg on the thermoelectric performance of the segmented annular thermoelectric generators is analysed and discussed and the optimization design of the annular thermoelectric generator with bismuth telluride and skutterudites as the materials with high thermoelectric performance is obtained. The result of the thermoelectric performance with the manipulated variable of the increase of length ratio, the output power, output voltage and efficiency of the segmented annular thermoelectric generators increase at the beginning then decrease afterwards. Additionally, to compare with the single bismuth telluride and skutterudites annular thermoelectric generators, the output voltage, output power and the conversion efficiency of the segmented annular thermoelectric generators can be improved twice. Lastly, the thermoelectric performance of the segmented annular thermoelectric generators operating in the changes of the temperature. The result has proved that as the temperature increase, the thermoelectric performance of the annular thermoelectric generator will also increase. Hence, the acquired results may be given some useful applications of the bismuth telluride and skutterudites on the segmented annular thermoelectric generators for waste heat recovery.

Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


2019 ◽  
Vol 158 ◽  
pp. 583-588 ◽  
Author(s):  
Xiaonan Ma ◽  
Gequn Shu ◽  
Hua Tian ◽  
Haoqi Yang ◽  
Tianyu Chen

Author(s):  
Dongxu Ji ◽  
Alessandro Romagnoli

In order to design an effective thermoelectric generator (TEG) heat exchanger for waste heat recovery, an accurate model is required for system design and performance predicting. In this paper, 1-D model is developed in MATLAB, taking into consideration of the multi-physics phenomena within TEG. The proposed model is different from existing thermoelectric models which mainly focus on the thermoelectric couple or device level without providing any guidance for designing an optimal system. When optimizing some TEG parameters, the optimal value found in a device level model might not be suitable when put into a waste heat recovery system. Therefore, in order to develop an optimized TEG system with optimum output power performance, a more comprehensive thermoelectric model integrated with the other components is needed. The current model integrates the thermoelectric module with the heat exchangers. Through this study, we found that the heat exchanger and module design have an impact on the total TEG output power in waste heat recovery system and a systematic design approach is needed.


2017 ◽  
Author(s):  
◽  
Qiuyi Su

Interest in thermoelectric generators for waste heat recovery has flourished in recent years. Typically, the efficiency of thermoelectric generators (TEGs) is quite low. Investigations are conducted in this thesis to get better performance and efficiency. The segmented leg generator is investigated as it is a promising method to increase a conventional TEGs' efficiency. This project presents the simulation model of a TEG with eight pairs of segmented legs. The simulation model is built with exactly the same materials and the same size as a physical TEG reported in the literature. Then the simulation model is compared with the prototype physical model to testify the accuracy of the simulation. The error between them is around 10 percent which is acceptable. After achieving the model of a segmented TEG, several methods are explored to improve its output power and conversion efficiency. Those methods include raising the working temperature, replacing the thermoelectric materials and reconfiguring the TEG geometry. It was found that the original model can be further optimized. After optimization, the output power increases from 188.2mW to 354.7mW, 703.13mW, and 212.85mW, respectively. Conversion efficiency increases from 1.66 percent to 2.08 percent, 7.03 percent, and 1.85 percent, respectively. Finally, a general method to design a segmented TEG is developed, using all knowledge gained from the computer simulations.


2012 ◽  
Vol 41 (6) ◽  
pp. 1024-1029 ◽  
Author(s):  
N. R. Kristiansen ◽  
G. J. Snyder ◽  
H. K. Nielsen ◽  
L. Rosendahl

Sign in / Sign up

Export Citation Format

Share Document