scholarly journals Numerical research on thermal stress of steam cooler tube sheet mechanical structure

2021 ◽  
Vol 2125 (1) ◽  
pp. 012013
Author(s):  
Jun Wu ◽  
Zhaoli Zheng ◽  
Yong Li ◽  
Jie Pang ◽  
Zhiwu Ke ◽  
...  

Abstract Steam cooler is one of the most important mechanical equipment in thermal power generation system and nuclear power generation system. The steam cooler bears a huge temperature gradient load when the working conditions are switched. In order to analyze the thermal stress of steam cooler tube sheet with high temperature load under harsh working conditions, the thermal-structural coupling analysis model of steam cooler tube sheet is constructed with finite element method. The results show that the stress concentration exists at the position connection between heat exchanger tube and cylinder. The maximum stress is located at the outermost heat exchanger tube with the peak stress of 320MPa. The heat exchanger tube layout alone cause higher stress. This situation should be avoided in the design of heat exchanger tube sheet. Furthermore, the strength and safety of the steam cooler tube sheet are evaluated with the stress linearization method. The steam cooler tube sheet design meets the safety requirements of structural strength under high temperature load.

1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


1956 ◽  
Vol 23 (3) ◽  
pp. 468-473
Author(s):  
Yi-Yuan Yu

Abstract The paper presents a rational method of analysis of heat-exchanger tube-sheet stresses. While the tube sheet is taken to be a perforated plate on an elastic foundation in the manner of Gardner and Miller, it is also considered as part of an integrated indeterminate structure, and the interaction between the tube sheet and the connecting cylindrical shells and flange of the exchanger is determined so that a condition may be formulated which the edge rotation and edge moment of the tube sheet must satisfy. In general, neither the edge rotation nor the edge moment is zero; the edge of a tube sheet is therefore neither clamped nor simply supported. Application of the present method to four different types of heat exchangers is described in detail. To illustrate the method, Gardner’s example of a fixed-tube-sheet exchanger is recalculated. While Gardner’s method yields only the two limiting values of the maximum stress in the tube sheet, which differ by more than 100 per cent, the present method makes it possible to determine the exact value of this maximum stress. By means of the present method, the stresses in the other parts of the heat exchanger, namely, the tubes, shell, head, and flange, also can be calculated. As a consequence of the present analysis, it is found that, in the external-floating-head type of exchanger, the tube-sheet stress is not independent of the shell-side pressure, which is contrary to Gardner’s and Miller’s conclusions.


1952 ◽  
Vol 19 (2) ◽  
pp. 159-166
Author(s):  
K. A. Gardner

Abstract It is shown that “fixed” tube sheets may be designed in exactly the same manner as “floating” tube sheets with the same boundary restraint, provided that a fictitious uniform “equivalent design pressure” is used in the calculations instead of the actual hydrostatic pressure. This equivalent pressure is evaluated in terms of tube-side pressure, shell-side pressure, differential thermal expansion, and the condition of boundary restraint. The design factors for all tube sheets presented in an earlier paper are shown to be well represented by very simple expressions when the fundamental design parameter xa becomes large.


2015 ◽  
Vol 2015 (1) ◽  
pp. 56-65
Author(s):  
Oleg Yur’evich Vilenskij ◽  
Alexey Nikolaevich Krylov ◽  
Sergey Leonidovich Osipov ◽  
Dmitry L’vovich Osetrov ◽  
Sergey Aleksandrovich Rogozhkin ◽  
...  

2021 ◽  
Vol 39 (2) ◽  
pp. 120-124
Author(s):  
Yuji Suzuki ◽  
Minhyeok Lee ◽  
Hajime Asama ◽  
Keiji Nagatani ◽  
Shunsuke Hamasaki ◽  
...  

Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to DOE for the development of heat-exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat-exchanger designs cover both metallic and ceramic materials for high temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6 × 6 ft-atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Author(s):  
Kenneth W. Horn

Damage from Microbiologically Influenced Corrosion in the United States has been estimated to cost in excess of $250 billion annually. The industries most affected include oil production, water distribution, and power generation. For this reason, Microbiologically Influenced Corrosion, commonly referred to as MIC, has been the subject of many papers. Since the majority of papers are written from the viewpoint of the microbiologist, it is the intent of this paper to explain MIC in the context of classical corrosion theory, with the ultimate goal being to provide the power plant engineer with guidance on heat exchanger tube materials and how to prevent MIC in heat exchanger tubing.


2018 ◽  
Author(s):  
Qun Chen ◽  
Xia Li ◽  
Xi Chen

The supercritical carbon dioxide (sCO2) power generation system holds tremendous potential in nuclear, chemical and renewable energy utilization fields due to its compactness, security and high efficiency. However, the dramatic variation in the physical property of sCO2 complicates the system analysis and optimization. Recent researches usually took simple stack of all governing equations of individual components as the physical model of system. Besides, based on the traditional heat transfer modeling method, some researches apply the segmentation method to take fluid property variation into consideration. These methods exacerbate the multivariate nonlinearity of the system and are not suitable to analyze complex sCO2 thermal systems. Moreover, taking the consideration of the strong nonlinearity of sCO2 system, most researches adopt single parameter analysis to obtain the optimum solution, which may not achieve global optimization. In this contribution, introduction of a new definition of thermal resistance of heat exchanger disassembles the original implicit nonlinear properties of heat transfer processes as the linear relation between inlet temperature difference of fluids and heat flow rate, and the explicit nonlinear expression of thermal resistance. For the nonlinearity caused by the variable properties of sCO2, segmentation is also used in heat exchanger modeling. However differently, the introduction of new defined thermal resistance enables the elimination of most intermediate variables produced by segmentation, which contributes to the connection of all segments in heat exchanger into a heat exchanger network. Furthermore, based on the system layout, the equivalent power flow diagram of the system is built to derive the corresponding governing equations revealing the overall transfer and conversion laws of heat. Combining the flow resistance balance equations of all components and the accompanying power flow processes constraints offers the inherent physical constraints among operating parameters. Benefit from the conciseness of system model, the genetic algorithm can be used for the model optimization. Taking thermal efficiency of the system as the optimization objective, the optimal matching of the operating parameters under variable working conditions is obtained.


Sign in / Sign up

Export Citation Format

Share Document