Power Flow Topology of Supercritical Carbon Dioxide Power Generation System and its Application in Modeling and Optimization

2018 ◽  
Author(s):  
Qun Chen ◽  
Xia Li ◽  
Xi Chen

The supercritical carbon dioxide (sCO2) power generation system holds tremendous potential in nuclear, chemical and renewable energy utilization fields due to its compactness, security and high efficiency. However, the dramatic variation in the physical property of sCO2 complicates the system analysis and optimization. Recent researches usually took simple stack of all governing equations of individual components as the physical model of system. Besides, based on the traditional heat transfer modeling method, some researches apply the segmentation method to take fluid property variation into consideration. These methods exacerbate the multivariate nonlinearity of the system and are not suitable to analyze complex sCO2 thermal systems. Moreover, taking the consideration of the strong nonlinearity of sCO2 system, most researches adopt single parameter analysis to obtain the optimum solution, which may not achieve global optimization. In this contribution, introduction of a new definition of thermal resistance of heat exchanger disassembles the original implicit nonlinear properties of heat transfer processes as the linear relation between inlet temperature difference of fluids and heat flow rate, and the explicit nonlinear expression of thermal resistance. For the nonlinearity caused by the variable properties of sCO2, segmentation is also used in heat exchanger modeling. However differently, the introduction of new defined thermal resistance enables the elimination of most intermediate variables produced by segmentation, which contributes to the connection of all segments in heat exchanger into a heat exchanger network. Furthermore, based on the system layout, the equivalent power flow diagram of the system is built to derive the corresponding governing equations revealing the overall transfer and conversion laws of heat. Combining the flow resistance balance equations of all components and the accompanying power flow processes constraints offers the inherent physical constraints among operating parameters. Benefit from the conciseness of system model, the genetic algorithm can be used for the model optimization. Taking thermal efficiency of the system as the optimization objective, the optimal matching of the operating parameters under variable working conditions is obtained.

Author(s):  
Xia Li ◽  
Qun Chen ◽  
Xi Chen

Due to the peculiar physical properties, supercritical carbon dioxide (sCO2) is considered as a promising working fluid in power generation cycles with high reliability, simple structure and great efficiency. Compared with the general thermal systems, the variable properties of sCO2 make the system models obtained by the traditional modelling method more complex. Besides, the pressure distribution in the system will affect the distribution of the fluid properties, the fluid properties influencing the heat transfer process will produce an impact on the temperature distribution which will in turn affect the pressure distribution through the mass flow characteristics of all components. This contribution introduces the entransy-based power flow method to analyze and optimize a recompression sCO2 power generation system under specific boundary conditions. About the heat exchanger, by subdividing the heat transfer area into several segment, the fluid properties in each segment are considered constant. Combining the entransy dissipation thermal resistance of each segment and the energy conservation of each fluid in each segment offers the governing equations for the whole heat transfer process without any intermediate segment temperatures, based on which the power flow diagram of the overall heat transfer process is constructed. Meanwhile, the pressure drops are constrained by the mass flow characteristics of each component, and the inlet and outlet temperatures of compressors and turbines are constrained by the isentropic process constraints and the isentropic efficiencies. Combining the governing equations for the heat exchangers and the constraints for turbine and the compressors, the whole system is modeled by sequential modular method. Based on this newly developed model, applying the genetic algorithm offers the maximum thermal efficiency of the system and the corresponding optimal operating variables, such as the mass flow rate of the working fluid in the cycle, the heat capacity rate of the cold source and the recompression mass fraction under the given heat source. Furthermore, the optimization of the system under different boundary conditions is conducted to study its influence on the optimal mass flow rate of the working fluid, the heat capacity of the cold source and the maximum system thermal efficiency. The results proposes some useful design suggestions to get better performance of the recompression supercritical carbon dioxide power generation system.


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Author(s):  
Hironobu Sameshima ◽  
Kazumasa Takahashi ◽  
Toru Sasaki ◽  
Takashi Kikuchi ◽  
Nobuhiro Harada ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 998
Author(s):  
Zhiyu Zhang ◽  
Rongrong Zhai ◽  
Xinwei Wang ◽  
Yongping Yang

The main purpose of this paper is to quantitatively analyze the sensitivity of operating parameters of the system to the thermodynamic performance of an oxyfuel combustion (OC) power generation system. Therefore, the thermodynamic model of a 600 MW subcritical OC power generation system with semi-dry flue gas recirculation was established. Two energy consumption indexes of the system were selected, process simulation was adopted, and orthogonal design, range analysis, and variance analysis were used for the first time on the basis of single-factor analysis to conduct a comprehensive sensitivity analysis and optimization research on the changes of four operating parameters. The results show that with increasing oxygen purity, the net standard coal consumption rate first decreases and then increases. With decreasing oxygen concentration, the recirculation rate of dry flue gas in boiler flue gas ( χ 1 ) and an increasing excess oxygen coefficient, the net standard coal consumption rate increases. The net electrical efficiency was just the opposite. The sensitivity order of two factors for four indexes is obtained: the excess oxygen coefficient was the main factor that affects the net standard coal consumption rate and the net electrical efficiency. The influence of oxygen concentration and oxygen purity was lower than that of excess oxygen coefficient, and χ 1 has almost no effect.


Sign in / Sign up

Export Citation Format

Share Document