scholarly journals Production and Characterization of Activated Carbon from Baobab Fruit Shells by Chemical Activation Using ZnCl2, H3PO4 and KOH

2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.

RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 8025-8032
Author(s):  
Jiaming Zhao ◽  
Lihua Yu ◽  
Feng Zhou ◽  
Huixia Ma ◽  
Kongyan Yang ◽  
...  

A series of micro–mesoporous activated carbons (ACs) were prepared from sugar beet residue by a two-step method including KOH chemical activation and were used for Cr(vi) removal from aqueous solutions.


2014 ◽  
Vol 9 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Sahira Joshi ◽  
Bhadra Prasad Pokharel

Activated carbon (AC) was prepared from Lapsi seed stone by chemical activation with Potassium hydroxide at 400°C. The AC was characterized by pH, moisture content, Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), methylene blue (MB) and iodine (I2) number. FT-IR spectra indicated the presence of various oxygen containing functional groups on the surface of AC. SEM images show the highly porous characteristics of AC with full of cavities. The Iodine number of AC revealed that the AC was found to be highly micro-porous. The adsorption of methylene blue by prepared AC was analyzed by the Langmuir and Freundlich adsorption isotherms. The data fitted well to the Langmuir isotherm with monolayer adsorption capacity 158 mg/g. The analysis showed that the AC prepared from Lapsi seed stone activated with potassium hydroxide could be a low-cost adsorbent with favorable surface properties. DOI: http://dx.doi.org/10.3126/jie.v9i1.10673Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 79–88


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


2014 ◽  
Vol 320 ◽  
pp. 674-680 ◽  
Author(s):  
Jianzhong Xu ◽  
Lingzhi Chen ◽  
Hongqiang Qu ◽  
Yunhong Jiao ◽  
Jixing Xie ◽  
...  

2020 ◽  
Vol 40 (1) ◽  
pp. 34-44
Author(s):  
Karen L. Martínez-Mendoza ◽  
Juan Manuel Barraza Burgos ◽  
Nilson Marriaga-Cabrales ◽  
Fiderman Machuca-Martinez ◽  
Mariber Barajas ◽  
...  

In this work, activated carbons were produced using coal as raw matter from seven Colombian carboniferous zones. Physical activation was performed in two stages: a carbonization stage with Nitrogen at a temperature of 850 °C and a residence time of 2 h, followed by an activation stage using steam at temperatures of 700 and 850 °C with residence times of 1,5 h and 2,5 h. From the pore volume characterization for the adsorption of gold, two activated carbons from Cundinamarca, obtained at 850 °C (1,5 h), 850 °C (2,5 h), and a commercial carbon (GRC 22) were selected. Gold adsorption tests were performed with those three activated carbons using synthetic aurocyanide solutions and a gold waste solution. The data of the adsorption isotherms were adjusted using the Freundlich adsorption model for the synthetic solution, as well as Langmuir for the waste solution. The results showed that, using a solution of 1 ppm, the activated carbons C-850-2.5 and C- 850-1.5 produced the higher maximum gold loading capacities in the equilibrium (8,7 and 9,3 mg Au/g, respectively) in comparison to the commercial activated carbon (4,7 mg Au/g).  Gold adsorption test using a waste solution (21 ppm of gold) showed that the activated carbon C-850-1.5 had the highest value of adsorption capacity (4,58 mg Au/g) compared to C-850-2.5 (2,95 mgAu /g).


2009 ◽  
Vol 87-88 ◽  
pp. 345-350
Author(s):  
Jian Qiang Zhang ◽  
Hui Xia Feng ◽  
Jian Hui Qiu

The wet surface modification process were used in this work to get the well lipophilic molybdenum disulfide (MoS2) powders and the modified MoS2 were filled into the polyphenylene sulfide (PPS) and polypropylene (PP) powders with different proportions to make polymeric based composites through hot-press molding equipment. The Fourier transform infrared spectrometer (FT-IR) analysis showed that the modification agents of stearic acid (SA), orγ-Methacryloxypropyl trimethoxy silane(KH570 or A-174), could react with the adsorption hydroxyl(−OH) of the MoS2 powders and finally form chemical coatings, the SA could form a layer of physics wrap too. The powder X-ray diffraction (XRD) analysis reveled that the SA or KH570 could not change the laminated structure of MoS2. The wearability testing showed that the composites filled by modified MoS2 owned the better wearable performances than the filled not one. From minimum to maximum, the wear mass rates of SA/MoS2/PP/PPS, KH570/MoS2/PP/PPS, PP/PPS were 0.7216, 5.4187 and 7.3198 percent in turns. Scanning electronic microscope (SEM) analysis showed the surface modification could uniformize the modified MoS2 to disperse in the polymeric based composites, and also reflect the abrasion mechanism which the particles and the adhering wear modes could all make the mass loss of the testing samples and they coexisted and could transform each other, the former would produce higher loss rates than the later and their leader status would gradually change from the particles wear to the adhering wear during the course of wearing-resisting tests.


Sign in / Sign up

Export Citation Format

Share Document