scholarly journals Preparation and Characterization of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone by Chemical Activation with Potassium Hydroxide

2014 ◽  
Vol 9 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Sahira Joshi ◽  
Bhadra Prasad Pokharel

Activated carbon (AC) was prepared from Lapsi seed stone by chemical activation with Potassium hydroxide at 400°C. The AC was characterized by pH, moisture content, Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), methylene blue (MB) and iodine (I2) number. FT-IR spectra indicated the presence of various oxygen containing functional groups on the surface of AC. SEM images show the highly porous characteristics of AC with full of cavities. The Iodine number of AC revealed that the AC was found to be highly micro-porous. The adsorption of methylene blue by prepared AC was analyzed by the Langmuir and Freundlich adsorption isotherms. The data fitted well to the Langmuir isotherm with monolayer adsorption capacity 158 mg/g. The analysis showed that the AC prepared from Lapsi seed stone activated with potassium hydroxide could be a low-cost adsorbent with favorable surface properties. DOI: http://dx.doi.org/10.3126/jie.v9i1.10673Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 79–88

2010 ◽  
Vol 8 (6) ◽  
pp. 1273-1280 ◽  
Author(s):  
Sayed Mohammadi ◽  
Mohammad Karimi ◽  
Daryoush Afzali ◽  
Fatemeh Mansouri

AbstractTwo series of activated carbon have been prepared by chemical activation of Amygdalus Scoparia shell with phosphoric acid or zinc chloride for the removal of Pb(II) ions from aqueous solutions. Several methods were employed to characterize the active carbon produced. The surface area was calculated using the standard Brunauer-Emmet-Teller method. The microstructures of the resultant activated carbon were observed by scanning electron microscopy. The chemical composition of the surface resultant activated carbon was determined by Fourier transform infrared spectroscopy. In the batch tests, the effect of pH, initial concentration, and contact time on the adsorption were studied. The data were fitted with Langmuir and Freundlich equations to describe the equilibrium isotherms. The maximum adsorption capacity of Pb(II) on the resultant activated carbon was 36.63 mg g−1 with H3PO4 and 28.74 mg g−1 with ZnCl2. To regenerate the spent adsorbents, desorption experiments were performed using 0.25 mol L−1 HCl. Here we propose that the activated carbon produced from Amygdalus Scoparia shell is an alternative low-cost adsorbent for Pb(II) adsorption.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.


2021 ◽  
Vol 3 (2) ◽  
pp. 73-79
Author(s):  
Aninda Tifani Puari

Activated carbon (AC) from agricultural waste has become one promising way to produce AC regarding to low price of the precursor and its effect to environment. In this research, the solid waste from the basic biology practical in UPT. Basic and Central Laboratory, Andalas University (Unand) was utilized as the precursor for producing low price AC. The activation was done by chemical activation using three different activating agents which were zink chloride (ZnCl2), phosphoric acid (H3PO4), potassium hydroxide (KOH). The carbonization process was done at temperature of 700°C. The precursor and three different AC after activation were characterized using fourier-transform infrared spectroscopy (FT-IR) to examine  the functional group and scanning electron microscope (SEM) to observe the pores structure. The adsorption efficiency (AE) of each AC on methylene blue (MB) contained in laboratory wastewater was examined through adsorption process with retention time of 30 minutes at room temperature and neutral pH. SEM analysis showed that the three activating agents were resulting in higher surface area and more pores were formed. The highest AE of MB from laboratory wastewater for each AC were 97,5 %, 96,31%, and 90,79 for KOH, , ZnCl2, and H3PO4, respectively. Meanwhile, the highest adsorption capacity was achieved by AC through KOH activation with 0,003 mg/g


2014 ◽  
Vol 26 (22) ◽  
pp. 7833-7836 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Hassan M. Al-Swaidan ◽  
Ahmad H. Alghamdi

2014 ◽  
Vol 320 ◽  
pp. 674-680 ◽  
Author(s):  
Jianzhong Xu ◽  
Lingzhi Chen ◽  
Hongqiang Qu ◽  
Yunhong Jiao ◽  
Jixing Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document