scholarly journals Implementing Self Organising Map to Organise the Unstructured Data

2021 ◽  
Vol 2129 (1) ◽  
pp. 012046
Author(s):  
S P Lim ◽  
C K Lee ◽  
J S Tan ◽  
S C Lim ◽  
C C You

Abstract Surface reconstruction is significant in reverse engineering because it should present the correct surface with minimum error using the data available. It has become a challenging process when the data are in the unstructured type and the existing methods are still suffering from accuracy issues. The unstructured data will produce an incorrect surface because there is no connectivity information among the data. So, the unstructured data should undergo the organising process to obtain the correct shape. The Self Organising Map (SOM) has been extensively applied in previous works to solve surface reconstruction problems. However, the performance of the SOM models has remained uncertain. It can be evaluated and tested using different types of data sets. The objectives of this research are to examine the performance and to determine the weaknesses of SOM models. 2D SOM, 3D SOM, and Cube Kohonen (CK) SOM models are investigated and tested using three data sets in this research. As shown in the experimental results, the CKSOM model has proved to perform better because it can represent the correct closed surface with the lowest minimum error.

2012 ◽  
Vol 490-495 ◽  
pp. 138-142
Author(s):  
Ying Hui Wang ◽  
Wei Yong Wu

Reconstructing geometry models from scattered data is an important task in reverse engineering. An adaptive subdivision surface reconstruction method was proposed to construct complex models rapidly. This method includes several steps: triangulation on scattered data; mesh segmentation and simplification; computing the subdivision depth according to the specified error. The last step is computing mesh control net by fitting subdivision functions and construct subdivision surface adaptively. In order to improve the efficiency of the algorithm, we implemented the reconstruction algorithm on GPU in parallel way and tested the program on several large scale data sets. Our adaptive subdivision method can save storage space and gain high efficiency simultaneously.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


2014 ◽  
Vol 92 ◽  
pp. 100-109 ◽  
Author(s):  
Jonjaua Ranogajec ◽  
Andrijana Sever-Skapin ◽  
Ognjen Rudic ◽  
Snezana Vucetic

The surfaces of building materials are constantly exposed to the actions of environmental factors, pollutants of inorganic and organic origin as well as to microorganisms, which significantly contribute to corrosion phenomena.The application of coatings decreases the negative action of the pollutants minimizing their direct contact with the substrate. Different types of coatings with additional functions have been developed. A specific problem of these applications is the lack of compatibility of the photocatalysts with the surface of the building materials and the detachment of potentially toxic TiO2nanoparticles. In the present study, this problem was solved by the proper immobilization of TiO2nanoparticles onto the photocatalyst support, layered double hydroxides (LDHs). The newly formed coating possesses acceptable porosity for a porous building material (porosity within the range of 30-46 %) and satisfied photocatalytic activity, as well as mineralogical compatibility with the substrates (mortars, renders, bricks). Additionally, a positive effect considering the self-cleaning phenomenon was attained.


10.1068/b3186 ◽  
2005 ◽  
Vol 32 (1) ◽  
pp. 89-110 ◽  
Author(s):  
Tom Kauko

The aim of exploring and monitoring housing-market fundamentals (prices, dwelling features, area density, residents, and so on) on a macrolocational level relates to both public and private sector policymaking. Housing market segmentation (that is, the emergence of housing submarkets), a concept with increasing relevance, is defined as the differentiation of housing in terms of the income and preferences of the residents and in terms of administrative circumstances. In order to capture such segmentation empirically, the author applies a fairly new and emerging technique known as the ‘self-organising’ map (SOM), or ‘Kohonen map’. The SOM is a type of (artificial) neural network—a nonlinear and flexible (that is, nonparametric or semiparametric) regression and ‘machine learning’ technique. By utilising the ability of the SOM to visualise patterns, one can analyse various dimensions within the variation of the dataset. Segmentation may then be detected depending on the resulting patterns across the map layers, each of which represents the data variation for one input variable. Utilising an inductive modelling strategy, the author runs cross-sectional and nationwide data on the owner-occupied housing markets of Finland (documentation presented elsewhere), the Netherlands, and Hungary with the SOM technique. On the basis of the resulting configurations certain regularities (similarities and differences) across the three national contexts are identified. In all three cases the segments are determined by physical and institutional differences between the housing bundles and localities. The exercise demonstrates how the inductive SOM-based approach is well-suited for illustrating the contextual factors that determine housing market structure.


2005 ◽  
Vol 15 (01n02) ◽  
pp. 101-110 ◽  
Author(s):  
TIMO SIMILÄ ◽  
SAMPSA LAINE

Practical data analysis often encounters data sets with both relevant and useless variables. Supervised variable selection is the task of selecting the relevant variables based on some predefined criterion. We propose a robust method for this task. The user manually selects a set of target variables and trains a Self-Organizing Map with these data. This sets a criterion to variable selection and is an illustrative description of the user's problem, even for multivariate target data. The user also defines another set of variables that are potentially related to the problem. Our method returns a subset of these variables, which best corresponds to the description provided by the Self-Organizing Map and, thus, agrees with the user's understanding about the problem. The method is conceptually simple and, based on experiments, allows an accessible approach to supervised variable selection.


2006 ◽  
Vol 11 (1) ◽  
pp. 114-129 ◽  
Author(s):  
Teemu Suna ◽  
Michael Hardey ◽  
Jouni Huhtinen ◽  
Yrjö Hiltunen ◽  
Kimmo Kaski ◽  
...  

A marked feature of recent developments in the networked society has been the growth in the number of people making use of Internet dating services. These services involve the accumulation of large amounts of personal information which individuals utilise to find others and potentially arrange offline meetings. The consequent data represent a challenge to conventional analysis, for example, the service that provided the data used in this paper had approximately 5,000 users all of whom completed an extensive questionnaire resulting in some 300 parameters. This creates an opportunity to apply innovative analytical techniques that may provide new sociological insights into complex data. In this paper we utilise the self-organising map (SOM), an unsupervised neural network methodology, to explore Internet dating data. The resulting visual maps are used to demonstrate the ability of SOMs to reveal interrelated parameters. The SOM process led to the emergence of correlations that were obscured in the original data and pointed to the role of what we call ‘cultural age’ in the profiles and partnership preferences of the individuals. Our results suggest that the SOM approach offers a well established methodology that can be easily applied to complex sociological data sets. The SOM outcomes are discussed in relation to other research about identifying others and forming relationships in a network society.


2014 ◽  
Vol 971-973 ◽  
pp. 402-405
Author(s):  
Zhou Wen ◽  
Jun Ling Zhang ◽  
Xiu Duan Gong

Globular indexing CAM mechanism is a good indexing mechanism. As the working curve of CAM contour surface is no extending curved surface, there is certain difficulty to design processing. It is new kinds of design method that reverse engineering apply in rapid modeling of curved CAM. In this way, designer can complete curve of CAM reverse modeling, and the rationality of the model is verified. At the same time, it also can reverse modeling and the subsequent development of other products to provide a reference.


2001 ◽  
Vol 7 (3) ◽  
pp. 253-282 ◽  
Author(s):  
Ch. Srinivasa Rao ◽  
P. L. Sachdev ◽  
Mythily Ramaswamy

The nonlinear ordinary differential equation resulting from the self-similar reduction of a generalized Burgers equation with nonlinear damping is studied in some detail. Assuming initial conditions at the origin we observe a wide variety of solutions – (positive) single hump, unbounded or those with a finite zero. The existence and nonexistence of positive bounded solutions with different types of decay (exponential or algebraic) to zero at infinity for specific parameter ranges are proved.


2018 ◽  
Vol 11 (11) ◽  
pp. 6203-6230 ◽  
Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Andrew P. Morse ◽  
Martin W. Gallagher

Abstract. Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the environment. Such particles may have different concentrations of chemical fluorophores and will respond differently in the presence of ultraviolet light, potentially allowing for different types of biological aerosol to be discriminated. Development of ultraviolet light induced fluorescence (UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sensor (WIBS) has allowed for size, morphology and fluorescence measurements to be collected in real-time. However, it is unclear without studying instrument responses in the laboratory, the extent to which different types of particles can be discriminated. Collection of laboratory data is vital to validate any approach used to analyse data and ensure that the data available is utilized as effectively as possible. In this paper a variety of methodologies are tested on a range of particles collected in the laboratory. Hierarchical agglomerative clustering (HAC) has been previously applied to UV-LIF data in a number of studies and is tested alongside other algorithms that could be used to solve the classification problem: Density Based Spectral Clustering and Noise (DBSCAN), k-means and gradient boosting. Whilst HAC was able to effectively discriminate between reference narrow-size distribution PSL particles, yielding a classification error of only 1.8 %, similar results were not obtained when testing on laboratory generated aerosol where the classification error was found to be between 11.5 % and 24.2 %. Furthermore, there is a large uncertainty in this approach in terms of the data preparation and the cluster index used, and we were unable to attain consistent results across the different sets of laboratory generated aerosol tested. The lowest classification errors were obtained using gradient boosting, where the misclassification rate was between 4.38 % and 5.42 %. The largest contribution to the error, in the case of the higher misclassification rate, was the pollen samples where 28.5 % of the samples were incorrectly classified as fungal spores. The technique was robust to changes in data preparation provided a fluorescent threshold was applied to the data. In the event that laboratory training data are unavailable, DBSCAN was found to be a potential alternative to HAC. In the case of one of the data sets where 22.9 % of the data were left unclassified we were able to produce three distinct clusters obtaining a classification error of only 1.42 % on the classified data. These results could not be replicated for the other data set where 26.8 % of the data were not classified and a classification error of 13.8 % was obtained. This method, like HAC, also appeared to be heavily dependent on data preparation, requiring a different selection of parameters depending on the preparation used. Further analysis will also be required to confirm our selection of the parameters when using this method on ambient data. There is a clear need for the collection of additional laboratory generated aerosol to improve interpretation of current databases and to aid in the analysis of data collected from an ambient environment. New instruments with a greater resolution are likely to improve on current discrimination between pollen, bacteria and fungal spores and even between different species, however the need for extensive laboratory data sets will grow as a result.


Sign in / Sign up

Export Citation Format

Share Document