scholarly journals Design and Fabrication of Multichannel PDMS Microfluidic

2021 ◽  
Vol 2129 (1) ◽  
pp. 012048
Author(s):  
M N Afnan Uda ◽  
U Hashim ◽  
M N A Uda ◽  
N A Parmin ◽  
V Thivina

Abstract Microfluidic delivers miniaturized fluidic networks for processing liquids in the microliter range. In the recent years, lab-on-chip (LOC) is become a main tool for point-of-care (POC) diagnostic especially in the medical field. In this paper, we presented a design and fabrication on multi disease analysis using single chip via delivery of fluid with the multiple transducers is the pathway of multi-channel microfluidic based LOC’s. 3 in 1 nano biosensor kit was attached with the microfluidic to produce nano-biolab-on-chip (NBLOC). The multi channels microfluidic chip was designed including the micro channels, one inlet, three outlet and sensor contact area. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The LOC system was designed using Design Spark Mechanical software and PDMS was used as a medium of the microfluidic. The microfluidic mold and PDMS microfluidic morphological properties have been characterized by using low power microscope (LPM), high power microscope (HPM) and surface profiler. The LOC system physical was experimental by dropping food coloring through the inlet and collecting at the sensor contact area outlet.

2020 ◽  
Vol 36 (4) ◽  
pp. 112-120
Author(s):  
A.V. Zverev ◽  
M. Andronik ◽  
V.V. Echeistov ◽  
Z.H. Issabayeva ◽  
O.S. Sorokina ◽  
...  

The results of the development and manufacture of an integrated membrane-free sensor for the control of accurate dilution of liquid samples on the microfluidic chip are presented. The proposed type of devices is intended for direct precise measurements of liquid flow rate in microchannels of laboratories-on-chip, including point-of-care systems. The sensor topology was optimized based on the numerical simulation results and technological requirements. The main characteristic of the developed sensor is the lack of a membrane in the design while maintaining the sensitivity and accuracy of the device at the level of a commercial membrane analogue. The fully biocompatible sensor was manufactured using standard microelectronics and soft lithography technologies. In order to optimize the sensor design, 32 different topologies of the device were tested. The integration of the flow sensors on the chip allows to significantly reduce the dead volume of the hydrodynamic system and to control the amount of liquid entering the individual reservoirs of the microfluidic chip. The sensor occupies an area of (210 x 140) um2 in the channel and is characterized by a relative error of 5% in the flow rate range of 100-1000 ul/min. microfluidics, lab-on-chip, calorimetric flow sensor, thermoresistive sensor, numerical simulation, hydrodynamics, complementary metal-oxide-semiconductor, microtechnologies Devices were made at the BMSTU Nanofabrication Facility (FMN Laboratory, FMNS REC, ID 74300).


Author(s):  
V. Ryzhkov ◽  
M. Andronik ◽  
V. Echeistov ◽  
Z. Issabayeva ◽  
O. Sorokina ◽  
...  

An integrated membrane-free sensor for precise measurements of fluid flow rate in microchannels of laboratories-on- chip has been developed. The sensor allows to measure flow on microfluidic chip in real time and is designed for liquid samples precise dilution control on the microfluidic chip. Fabrication technology of the microfluidic chip with built-in flow sensors as well as results of experimental comparison of developed sensor with a commercial flowmeter are presented.


1970 ◽  
Vol 110 (4) ◽  
pp. 61-66
Author(s):  
A. T. Giannitsis ◽  
T. Parve ◽  
M. Min

Lab-on-chip devices comprise a class of bioelectronic miniaturized devices that incorporate microfluidic and biosensing apparatuses on a single chip. They are dedicated for analyzing and processing biochemical liquid samples, which may consist of enzymes, proteins, nucleotides, or even cells and viruses. Furthermore, lab-on-chips may enhance synthesis of biochemical products. The importance of lab-on-chip devices lies on their potentiality of advancing the development of environmental monitoring sensors and also point-of-care analyzers in medicine. This article presents the usual microfabrication methods for manufacturing lab-on-chip devices, with emphasis on the integration of the biosensor, the biocompatibility of the sensing element of the biosensor, and the essential electronics. Three major types of biosensors are analyzed: optical, impedimetric and electrochemical ones. Ill. 7, bibl. 28 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.288


2008 ◽  
Vol 94 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Marco Bianchessi ◽  
Sarah Burgarella ◽  
Marco Cereda

The development of new powerful applications and the improvement in fabrication techniques are promising an explosive growth in lab-on-chip use in the upcoming future. As the demand reaches significant levels, the semiconductor industry may enter in the field, bringing its capability to produce complex devices in large volumes, high quality and low cost. The lab-on-chip concept, when applied to medicine, leads to the point-of-care concept, where simple, compact and cheap instruments allow diagnostic assays to be performed quickly by untrained personnel directly at the patient's side. In this paper, some practical and economical considerations are made to support the advantages of point-of-care testing. A series of promising technologies developed by STMicroelectronics on lab-on-chips is also presented, mature enough to enter in the common medical practice. The possible use of these techniques for cancer research, diagnosis and treatment are illustrated together with the benefits offered by their implementation in point-of-care testing.


2020 ◽  
Vol 30 (11) ◽  
pp. 115012 ◽  
Author(s):  
Daniel Podbiel ◽  
Lorenz Boecking ◽  
Hannah Bott ◽  
Julian Kassel ◽  
Daniel Czurratis ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Yujun Chen ◽  
Tao Gong ◽  
Cilong Yu ◽  
Xiang Qian ◽  
Xiaohao Wang

Simplifying tedious sample preparation procedures to improve analysis efficiency is a major challenge in contemporary analytical chemistry. Solid phase microextraction (SPME), a technology developed for rapid sample pretreatment, has flexibility in design, geometry, and calibration strategies, which makes it a useful tool in a variety of fields, especially environmental and life sciences. Therefore, it is important to study the coupling between the microfluidic electrospray ionization (ESI) chip integrated with the solid phase microextraction (SPME) module and the electrospray mass spectrometer (MS). In our previous work, we designed a solid phase microextraction (SPME) module on a microfluidic chip through geometric design. However, automation and calibration methods for the extraction process remain unresolved in the SPME on-chip domain, which will lead to faster and more accurate results. This paper discusses the necessity to design a micromixer structure that can produce different elution conditions on the microfluidic chip. By calculating the channel resistances, the microfluidic chip’s integrated module with the micromixer, SPME, and ESI emitters optimize the geometry structure. We propose the annular channel for SPME to perform the resistances balance of the entire chip. Finally, for SPME on a single chip, this work provides a quantitation calibration method to describe the distribution of the analytes between the sample and the extraction phase before reaching the adsorption equilibrium.


2013 ◽  
Vol 832 ◽  
pp. 506-510
Author(s):  
Tijjani Adam ◽  
U. Hashim ◽  
T.S. Dhahi ◽  
M. Wesam Al-Mufti ◽  
Khaled Emraje Mohamed Elderjy

A fluid dynamics in a micro channel for analytical chemistry and different aspects of this type of flow for specific application has remained a long-acting problem in the last two decades considering its numerus applications in various fields, thus, Surface tension and wall adhesive forces are often used to transport fluid through micro channels in Micro Electromechanical system devices or to measure the transport and position of small amounts of fluid using micropipettes. Here we took the advantages of wall adhesion and surface tension at the air/fluid interface, fluid rises through the channel and study also calculate the velocity, pressure and shape and position of the fluid surface, the model consist of a capillary channel of radius 50μm and a chamber. The study demonstrated that the fluid freely flown into the chamber 2mm/s without using any external mechanism.


2015 ◽  
Vol 451 ◽  
pp. 240-246 ◽  
Author(s):  
Nicola Marziliano ◽  
Maria Francesca Notarangelo ◽  
Marco Cereda ◽  
Vittoria Caporale ◽  
Lucia Coppini ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (3) ◽  
pp. 031313
Author(s):  
Aref Asghari ◽  
Chao Wang ◽  
Kyoung Min Yoo ◽  
Ali Rostamian ◽  
Xiaochuan Xu ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 576 ◽  
Author(s):  
Edgar Jiménez-Díaz ◽  
Mariel Cano-Jorge ◽  
Diego Zamarrón-Hernández ◽  
Lucia Cabriales ◽  
Francisco Páez-Larios ◽  
...  

Microfluidics has become a very promising technology in recent years, due to its great potential to revolutionize life-science solutions. Generic microfabrication processes have been progressively made available to academic laboratories thanks to cost-effective soft-lithography techniques and enabled important progress in applications like lab-on-chip platforms using rapid- prototyping. However, micron-sized features are required in most designs, especially in biomimetic cell culture platforms, imposing elevated costs of production associated with lithography and limiting the use of such devices. In most cases, however, only a small portion of the structures require high-resolution and cost may be decreased. In this work, we present a replica-molding method separating the fabrication steps of low (macro) and high (micro) resolutions and then merging the two scales in a single chip. The method consists of fabricating the largest possible area in inexpensive macromolds using simple techniques such as plastics micromilling, laser microfabrication, or even by shrinking printed polystyrene sheets. The microfeatures were made on a separated mold or onto existing macromolds using photolithography or 2-photon lithography. By limiting the expensive area to the essential, the time and cost of fabrication can be reduced. Polydimethylsiloxane (PDMS) microfluidic chips were successfully fabricated from the constructed molds and tested to validate our micro–macro method.


Sign in / Sign up

Export Citation Format

Share Document