INTEGRATED MICROFLUIDIC FLOW SENSOR FOR LAB-ON-CHIP AND POINT-OF-CARE APPLICATIONS

Author(s):  
V. Ryzhkov ◽  
M. Andronik ◽  
V. Echeistov ◽  
Z. Issabayeva ◽  
O. Sorokina ◽  
...  

An integrated membrane-free sensor for precise measurements of fluid flow rate in microchannels of laboratories-on- chip has been developed. The sensor allows to measure flow on microfluidic chip in real time and is designed for liquid samples precise dilution control on the microfluidic chip. Fabrication technology of the microfluidic chip with built-in flow sensors as well as results of experimental comparison of developed sensor with a commercial flowmeter are presented.

2020 ◽  
Vol 36 (4) ◽  
pp. 112-120
Author(s):  
A.V. Zverev ◽  
M. Andronik ◽  
V.V. Echeistov ◽  
Z.H. Issabayeva ◽  
O.S. Sorokina ◽  
...  

The results of the development and manufacture of an integrated membrane-free sensor for the control of accurate dilution of liquid samples on the microfluidic chip are presented. The proposed type of devices is intended for direct precise measurements of liquid flow rate in microchannels of laboratories-on-chip, including point-of-care systems. The sensor topology was optimized based on the numerical simulation results and technological requirements. The main characteristic of the developed sensor is the lack of a membrane in the design while maintaining the sensitivity and accuracy of the device at the level of a commercial membrane analogue. The fully biocompatible sensor was manufactured using standard microelectronics and soft lithography technologies. In order to optimize the sensor design, 32 different topologies of the device were tested. The integration of the flow sensors on the chip allows to significantly reduce the dead volume of the hydrodynamic system and to control the amount of liquid entering the individual reservoirs of the microfluidic chip. The sensor occupies an area of (210 x 140) um2 in the channel and is characterized by a relative error of 5% in the flow rate range of 100-1000 ul/min. microfluidics, lab-on-chip, calorimetric flow sensor, thermoresistive sensor, numerical simulation, hydrodynamics, complementary metal-oxide-semiconductor, microtechnologies Devices were made at the BMSTU Nanofabrication Facility (FMN Laboratory, FMNS REC, ID 74300).


2021 ◽  
Vol 2129 (1) ◽  
pp. 012048
Author(s):  
M N Afnan Uda ◽  
U Hashim ◽  
M N A Uda ◽  
N A Parmin ◽  
V Thivina

Abstract Microfluidic delivers miniaturized fluidic networks for processing liquids in the microliter range. In the recent years, lab-on-chip (LOC) is become a main tool for point-of-care (POC) diagnostic especially in the medical field. In this paper, we presented a design and fabrication on multi disease analysis using single chip via delivery of fluid with the multiple transducers is the pathway of multi-channel microfluidic based LOC’s. 3 in 1 nano biosensor kit was attached with the microfluidic to produce nano-biolab-on-chip (NBLOC). The multi channels microfluidic chip was designed including the micro channels, one inlet, three outlet and sensor contact area. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The LOC system was designed using Design Spark Mechanical software and PDMS was used as a medium of the microfluidic. The microfluidic mold and PDMS microfluidic morphological properties have been characterized by using low power microscope (LPM), high power microscope (HPM) and surface profiler. The LOC system physical was experimental by dropping food coloring through the inlet and collecting at the sensor contact area outlet.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Usama Abbasi ◽  
Prasanta Chowdhury ◽  
Sasikala Subramaniam ◽  
Prakhar Jain ◽  
Nitin Muthe ◽  
...  

AbstractWe demonstrate a proprietary lab-on-chip/μ TAS technology platform for a regulatory grade portable instrument for complete blood count (CBC) hematology tests including 3 part differential WBCs, RBCs, platelet and hemoglobin for rapid diagnostics at the point of care in resource-poor settings. Presently, diagnostics based on blood tests are confined to centralized laboratory settings, dependent on large footprint and expensive cytometers or on a microscope, requiring trained laboratory technicians. Consequently, such facilities are not present in rural and semi-urban settings, where there are opportunities and challenges in delivering efficient healthcare infrastructure at an affordable cost in resource-challenged environments. Our proposed design leverages advances in microfluidics and lab-on-chip fabrication techniques to miniaturize the conventional cytometer and bring down the cost significantly. The device can be operated autonomously, without skilled manpower, by primary healthcare professionals in the field and by patients (like glucose self-test devices). The instrument consists of a single-use chip, the size of a credit card, pre-loaded with reagents, in which the sample is loaded, and which is fluidically insulated from the environment. The controller, the size of a toaster, performs the necessary fluid handling and the impedance measurements to deliver the results in minutes.


2008 ◽  
Vol 94 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Marco Bianchessi ◽  
Sarah Burgarella ◽  
Marco Cereda

The development of new powerful applications and the improvement in fabrication techniques are promising an explosive growth in lab-on-chip use in the upcoming future. As the demand reaches significant levels, the semiconductor industry may enter in the field, bringing its capability to produce complex devices in large volumes, high quality and low cost. The lab-on-chip concept, when applied to medicine, leads to the point-of-care concept, where simple, compact and cheap instruments allow diagnostic assays to be performed quickly by untrained personnel directly at the patient's side. In this paper, some practical and economical considerations are made to support the advantages of point-of-care testing. A series of promising technologies developed by STMicroelectronics on lab-on-chips is also presented, mature enough to enter in the common medical practice. The possible use of these techniques for cancer research, diagnosis and treatment are illustrated together with the benefits offered by their implementation in point-of-care testing.


2020 ◽  
Vol 30 (11) ◽  
pp. 115012 ◽  
Author(s):  
Daniel Podbiel ◽  
Lorenz Boecking ◽  
Hannah Bott ◽  
Julian Kassel ◽  
Daniel Czurratis ◽  
...  

2015 ◽  
Vol 451 ◽  
pp. 240-246 ◽  
Author(s):  
Nicola Marziliano ◽  
Maria Francesca Notarangelo ◽  
Marco Cereda ◽  
Vittoria Caporale ◽  
Lucia Coppini ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (3) ◽  
pp. 031313
Author(s):  
Aref Asghari ◽  
Chao Wang ◽  
Kyoung Min Yoo ◽  
Ali Rostamian ◽  
Xiaochuan Xu ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 982 ◽  
Author(s):  
Maria Francesca Santangelo ◽  
Ivan Shtepliuk ◽  
Donatella Puglisi ◽  
Daniel Filippini ◽  
Rositsa Yakimova ◽  
...  

Two-dimensional materials may constitute key elements in the development of a sensing platform where extremely high sensitivity is required, since even minimal chemical interaction can generate appreciable changes in the electronic state of the material. In this work, we investigate the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb). The integration of preparatory steps needed for sample conditioning is included in the sensing platform, exploiting fast prototyping using a 3D printer, which allows direct fabrication of a microfluidic chip incorporating all the features required to connect and execute the Lab-on-chip (LOC) functions. It is demonstrated that interaction of Pb2+ ions in water-based solutions with the EG enhances its conductivity exhibiting a Langmuir correlation between signal and Pb2+ concentration. Several concentrations of Pb2+ solutions ranging from 125 nM to 500 µM were analyzed showing good stability and reproducibility over time.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1917 ◽  
Author(s):  
Shane O’Sullivan ◽  
Zulfiqur Ali ◽  
Xiaoyi Jiang ◽  
Reza Abdolvand ◽  
M Selim Ünlü ◽  
...  

We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sotirios Papamatthaiou ◽  
Pedro Estrela ◽  
Despina Moschou

AbstractLab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.


Sign in / Sign up

Export Citation Format

Share Document