scholarly journals Correction of the model dynamics for the Northern seas using observational altimetry data

2021 ◽  
Vol 2131 (2) ◽  
pp. 022113
Author(s):  
K Belyaev ◽  
B Chetverushkin ◽  
A Kuleshov ◽  
I Smirnov

Abstract The earlier derived data assimilation method called Generalized Kalman filter (GKF) is applied in conjunction with the Nucleus for European Modelling of the Ocean (NEMO) circulation model to the calculation of the dynamics in the North Seas of Russia. By assimilating the satellite altimetry data from archive AVISO (Archiving, validating and interpolating of satellite observations) this method corrects the direct model calculations and improves the ocean state. The model fields, in particular, sea level and sea surface temperature with and without assimilation are constructed and compared with each other. The brief analysis of the results is also performed.

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Ioannis Mintourakis

AbstractWhen processing satellite altimetry data for Mean Sea Surface (MSS) modelling in coastal environments many problems arise. The degradation of the accuracy of the Sea Surface Height (SSH) observations close to the coastline and the usually irregular pattern and variability of the sea surface topography are the two dominant factors which have to be addressed. In the present paper, we study the statistical behavior of the SSH observations in relation to the range from the coastline for many satellite altimetry missions and we make an effort to minimize the effects of the ocean variability. Based on the above concepts we present a process strategy for the homogenization of multi satellite altimetry data that takes advantage ofweighted SSH observations and applies high degree polynomials for the adjustment and their uniffcation at a common epoch. At each step we present the contribution of each concept to MSS modelling and then we develop a MSS, a marine geoid model and a grid of gravity Free Air Anomalies (FAA) for the area under study. Finally, we evaluate the accuracy of the resulting models by comparisons to state of the art global models and other available data such as GPS/leveling points, marine GPS SSH’s and marine gravity FAA’s, in order to investigate any progress achieved by the presented strategy


2005 ◽  
Vol 62 (3) ◽  
pp. 319-327 ◽  
Author(s):  
Jeffrey J. Polovina ◽  
Evan A. Howell

Abstract Satellite remotely sensed oceanographic data provide reliable global ocean coverage of sea surface temperature, sea surface height, surface winds, and ocean colour, with relatively high spatial and temporal resolution. We illustrate approaches to use these data to construct indicators that describe aspects of ecosystem dynamics in the North Pacific. Specifically, altimetry data are used to construct regional indicators of the ocean vertical structure, ocean colour data to describe the temporal chlorophyll dynamics of the coastal zone, ocean colour, sea surface temperature, and altimetry data to develop indices of biologically important ocean features, and finally altimetry data to drive a larval transport model and develop an index of larval retention. Recent changes in the North Pacific based on these indices are discussed.


Author(s):  
E. Ghalenoei ◽  
M. A. Sharifi ◽  
M. Hasanlou

The aim of this study is calculation of sea surface currents (SSCs) which are estimated from satellite data sets and processed with the variance component estimation (VCE) algorithm to check role of each data set, in fused surface currents (FSCs). The satellite data used in this study are sea surface temperature (SST), satellite altimetry data and sea surface wind (SSW) that plays the important role to make the SSCs and is measured by Ascat satellite. We use optical flow (OF) method (Horn-Schunck algorithm) to extract sea surface movements from sequential SST imageries; in addition, geostrophic currents (GCs) are estimated by satellite altimetry data like sea surface height (SSH). Combining these data sets, has its pros and cons, the OF results are so dense and precise due to high spatial resolution of MODIS data (SST), but sometimes cloud covering over the sea, does not allow the MODIS sensor to measure the SST. In contrast the SST data, the altimetry data have poor spatial resolution and the GCs are not able to determine small scale SSCs. The VCE algorithm shows variances of our data sets and it can be shown their correlations with themselves and with the FSCs. We also calculate angular differences between FSCs and OF, GCs and SSW, and plot distributions of these angular differences. We discover that, the OF and SSW are homolographic, but OF and GCs are accordant to each other.


GEODYNAMICS ◽  
2011 ◽  
Vol 1(10)2011 (1(10)) ◽  
pp. 27-30
Author(s):  
N. Marchenko ◽  
◽  
N.P. Yarema ◽  
T.R. Pavliv ◽  
◽  
...  

The study of Black Sea and Mediterranean Sea surface altitudes was carried out based on satellite altimetry data. The model of the Black Sea and Mediterranean Sea surface topography (SST) was build. The comparison of received results with the European quasigeoid was done.


Sign in / Sign up

Export Citation Format

Share Document