scholarly journals An improved YOLO v3 algorithm for remote Sensing image target detection

2021 ◽  
Vol 2132 (1) ◽  
pp. 012028
Author(s):  
Fan Yang

Abstract With more and more in-depth research on deep learning algorithms in recent years, how to use deep learning method to detect remote sensing images is the key to improving the utilization efficiency of remote sensing data and realizing the transformation from data to knowledge. In this paper, an improved YOLO V3 algorithm is proposed to solve the problems of missed detection and false detection of the original YOLOv3 algorithm in remote sensing image target detection with different size and wide disparity in length and width ratio. first of all, K-means algorithm is used for clustering analysis of data set to obtain the position of anchor box; Secondly, the dilated convolution with expansion rate of 2 is used to replace the general convolution in the feature extraction part; Then four scales are used for prediction; Finally, the improved algorithm is applied to the recognition of bridges, harbors and airports. The results show that the detection performance of the algorithm is improved by about 2% compared with the original algorithm.

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yi Lv ◽  
Zhengbo Yin ◽  
Zhezhou Yu

In order to improve the accuracy of remote sensing image target detection, this paper proposes a remote sensing image target detection algorithm DFS based on deep learning. Firstly, dimension clustering module, loss function, and sliding window segmentation detection are designed. The data set used in the experiment comes from GoogleEarth, and there are 6 types of objects: airplanes, boats, warehouses, large ships, bridges, and ports. Training set, verification set, and test set contain 73490 images, 22722 images, and 2138 images, respectively. It is assumed that the number of detected positive samples and negative samples is A and B, respectively, and the number of undetected positive samples and negative samples is C and D, respectively. The experimental results show that the precision-recall curve of DFS for six types of targets shows that DFS has the best detection effect for bridges and the worst detection effect for boats. The main reason is that the size of the bridge is relatively large, and it is clearly distinguished from the background in the image, so the detection difficulty is low. However, the target of the boat is very small, and it is easy to be mixed with the background, so it is difficult to detect. The MAP of DFS is improved by 12.82%, the detection accuracy is improved by 13%, and the recall rate is slightly decreased by 1% compared with YOLOv2. According to the number of detection targets, the number of false positives (FPs) of DFS is much less than that of YOLOv2. The false positive rate is greatly reduced. In addition, the average IOU of DFS is 11.84% higher than that of YOLOv2. For small target detection efficiency and large remote sensing image detection, the DFS algorithm has obvious advantages.


2021 ◽  
Vol 87 (8) ◽  
pp. 577-591
Author(s):  
Fengpeng Li ◽  
Jiabao Li ◽  
Wei Han ◽  
Ruyi Feng ◽  
Lizhe Wang

Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set.


2020 ◽  
Vol 12 (2) ◽  
pp. 275 ◽  
Author(s):  
Zhengxia Zou ◽  
Tianyang Shi ◽  
Wenyuan Li ◽  
Zhou Zhang ◽  
Zhenwei Shi

Despite the recent progress in deep learning and remote sensing image interpretation, the adaption of a deep learning model between different sources of remote sensing data still remains a challenge. This paper investigates an interesting question: do synthetic data generalize well for remote sensing image applications? To answer this question, we take the building segmentation as an example by training a deep learning model on the city map of a well-known video game “Grand Theft Auto V” and then adapting the model to real-world remote sensing images. We propose a generative adversarial training based segmentation framework to improve the adaptability of the segmentation model. Our model consists of a CycleGAN model and a ResNet based segmentation network, where the former one is a well-known image-to-image translation framework which learns a mapping of the image from the game domain to the remote sensing domain; and the latter one learns to predict pixel-wise building masks based on the transformed data. All models in our method can be trained in an end-to-end fashion. The segmentation model can be trained without using any additional ground truth reference of the real-world images. Experimental results on a public building segmentation dataset suggest the effectiveness of our adaptation method. Our method shows superiority over other state-of-the-art semantic segmentation methods, for example, Deeplab-v3 and UNet. Another advantage of our method is that by introducing semantic information to the image-to-image translation framework, the image style conversion can be further improved.


2019 ◽  
Vol 15 (5) ◽  
pp. 391-395 ◽  
Author(s):  
Min Wang ◽  
Jin-yong Chen ◽  
Gang Wang ◽  
Feng Gao ◽  
Kang Sun ◽  
...  

Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document