scholarly journals Comparison of wavelet analysis with velocity derivatives for detection of shear layer and vortices inside a turbulent boundary layer

2011 ◽  
Vol 318 (6) ◽  
pp. 062012 ◽  
Author(s):  
Radka Kellnerova ◽  
Libor Kukacka ◽  
Klara Jurcakova ◽  
Vaclav Uruba ◽  
Zbynek Janour
2008 ◽  
Vol 617 ◽  
pp. 11-30 ◽  
Author(s):  
R. CAMUSSI ◽  
G. ROBERT ◽  
M. C. JACOB

Pressure fluctuations measured at the wall of a turbulent boundary layer are analysed using a bi-variate continuous wavelet transform. Cross-wavelet analyses of pressure signals obtained from microphone pairs are performed and a novel post-processing technique aimed at selecting events with strong local-in-time coherence is applied. Probability density functions and conditionally averaged equivalents of Fourier spectral quantities, usually introduced for modelling purposes, are computed. The analysis is conducted for signals obtained at low Mach numbers from two different non-equilibrium turbulent boundary layer experiments. It is found that that the selected events, though statistically independent, exhibit bi-modal statistics while the conditional coherence function coincides with its non-conditional Fourier equivalent. The physical nature of the selected events has been further explored by the computation of ensemble-averaged pressure time signatures and the results have been physically interpreted with the aid of numerical and experimental results from the literature. In both experiments, it has been found that the major physical mechanisms responsible for the observed conditional statistics are represented by sweep-type events which can be ascribed to the effect of streamwise vortices in the near-wall region. More precisely, the wavelet analysis highlights the convection of the selected structures in both cases. Conversely, compressibilty effects could be related to these events only in one case.


2016 ◽  
Vol 795 ◽  
pp. 611-633 ◽  
Author(s):  
Y. Jodai ◽  
G. E. Elsinga

Time-resolved tomographic particle image velocimetry experiments show that new hairpin vortices are generated within a fully developed and unperturbed turbulent boundary layer. The measurements are taken at a Reynolds number based on the momentum thickness of 2038, and cover the near-wall region below $y^{+}=140$, where $y^{+}$ is the wall-normal distance in wall units. Instantaneous visualizations of the flow reveal near-wall low-speed streaks with associated quasi-streamwise vortices, retrograde inverted arch vortices, hairpin vortices and hairpin packets. The hairpin heads are observed as close to the wall as $y^{+}=30$. Examples of hairpin packet evolution reveal the development of new hairpin vortices, which are created upstream and close to the wall in a manner consistent with the auto-generation model (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). The development of the new hairpin appears to be initiated by an approaching sweep event, which perturbs the shear layer associated with the initial packet. The shear layer rolls up, thereby forming the new hairpin head. The head subsequently connects to existing streamwise vortices and develops into a hairpin. The time scale associated with the hairpin auto-generation is 20–30 wall units of time. This demonstrates that hairpins can be created over short distances within a developed turbulent boundary layer, implying that they are not simply remnants of the laminar-to-turbulent transition process far upstream.


1998 ◽  
Vol 374 ◽  
pp. 379-405 ◽  
Author(s):  
Y. NA ◽  
P. MOIN

A separated turbulent boundary layer over a flat plate was investigated by direct numerical simulation of the incompressible Navier–Stokes equations. A suction-blowing velocity distribution was prescribed along the upper boundary of the computational domain to create an adverse-to-favourable pressure gradient that produces a closed separation bubble. The Reynolds number based on inlet free-stream velocity and momentum thickness is 300. Neither instantaneous detachment nor reattachment points are fixed in space but fluctuate significantly. The mean detachment and reattachment locations determined by three different definitions, i.e. (i) location of 50% forward flow fraction, (ii) mean dividing streamline (ψ=0), (iii) location of zero wall-shear stress (τw=0), are in good agreement. Instantaneous vorticity contours show that the turbulent structures emanating upstream of separation move upwards into the shear layer in the detachment region and then turn around the bubble. The locations of the maximum turbulence intensities as well as Reynolds shear stress occur in the middle of the shear layer. In the detached flow region, Reynolds shear stresses and their gradients are large away from the wall and thus the largest pressure fluctuations are in the middle of the shear layer. Iso-surfaces of negative pressure fluctuations which correspond to the core region of the vortices show that large-scale structures grow in the shear layer and agglomerate. They then impinge on the wall and subsequently convect downstream. The characteristic Strouhal number St=fδ*in/U0 associated with this motion ranges from 0.0025 to 0.01. The kinetic energy budget in the detachment region is very similar to that of a plane mixing layer.


1999 ◽  
Vol 121 (1) ◽  
pp. 152-159 ◽  
Author(s):  
P. K. Panigrahi ◽  
S. Acharya

This paper provides detailed measurements of the flow in a ribbed coolant passage, and attempts to delineate the important mechanisms that contribute to the production of turbulent shear stress and the normal stresses. It is shown that the separated flow behind the rib is dictated by large-scale structures, and that the dynamics of the large-scale structures, associated with sweep, ejection, and inward and outward interactions, all play an important role in the production of the turbulent shear stress. Unlike the turbulent boundary layer, in a separated shear flow past the rib, the inward and outward interaction terms are both important, accounting for a negative stress production that is nearly half of the positive stress produced by the ejection and sweep mechanisms. It is further shown that the shear layer wake persists well past the re-attachment location of the shear layer, implying that the flow between ribbed passages never recovers to that of a turbulent boundary layer. Therefore, even past re-attachment, the use of statistical turbulence models that ignore coherent structure dynamics is inappropriate.


Author(s):  
B. R. McAuliffe ◽  
M. I. Yaras

Through numerical simulations, this paper examines the nature of instability mechanisms leading to transition in separation bubbles. The results of two direct numerical simulations are presented in which separation of a laminar boundary layer occurs over a flat surface in the presence of an adverse pressure gradient. The primary difference in the flow conditions between the two simulations is the level of freestream turbulence with intensities of 0.1% and 1.45% at separation. In the first part of the paper, transition under a low-disturbance environment is examined, and the development of the Kelvin-Helmholtz instability in the separated shear layer is compared to the well-established instability characteristics of free shear layers. The study examines the role of the velocity-profile shape on the instability characteristics and the nature of the large-scale vortical structures shed downstream of the bubble. The second part of the paper examines transition in a high-disturbance environment, where the above-mentioned mechanism is bypassed as a result of elevated freestream turbulence. Filtering of the freestream turbulence into the laminar boundary layer results in streamwise streaks which provide conditions under which turbulent spots are produced in the separated shear layer, grow, and then merge to form a turbulent boundary layer. The results allow identification of the structure of the instability mechanism and the characteristic structure of the resultant turbulent spots. Recovery of the reattached turbulent boundary layer is then examined for both cases. The large-scale flow structures associated with transition are noted to remain coherent far downstream of reattachment, delaying recovery of the turbulent boundary layer to an equilibrium state.


2002 ◽  
Vol 33 (5) ◽  
pp. 670-676 ◽  
Author(s):  
L. Labraga ◽  
B. Lagraa ◽  
A. Mazouz ◽  
L. Keirsbulck

Sign in / Sign up

Export Citation Format

Share Document