scholarly journals Impurity effects on the superconducting transition temperatures of Fe pnictides and superconducting symmetry of the order parameter

2012 ◽  
Vol 400 (2) ◽  
pp. 022104 ◽  
Author(s):  
M Sato ◽  
Y Kobayashi ◽  
S Satomi ◽  
T Kawamata ◽  
M Itoh
2019 ◽  
Vol 7 (9) ◽  
pp. 2589-2595 ◽  
Author(s):  
Luo Yan ◽  
Tao Bo ◽  
Peng-Fei Liu ◽  
Bao-Tian Wang ◽  
Yong-Guang Xiao ◽  
...  

We predict two new molybdenum boride monolayers as phonon-mediated superconductors with superconducting transition temperatures of 3.9 and 0.2 K.


2018 ◽  
Vol 32 (18) ◽  
pp. 1850195
Author(s):  
S. Dzhumanov ◽  
E. X. Karimboev ◽  
Sh. S. Djumanov

The smooth evolution of the energy gap observed in the tunneling and angle-resolved photoemission spectra (ARPES) of high-[Formula: see text] cuprates with lowering the temperature from a pseudogap state above the critical temperature [Formula: see text] to a superconducting state below [Formula: see text], has been poorly interpreted as the evidence that the pseudogap must have the same origin as the superconducting order parameter, and therefore, must be related to [Formula: see text]. We argue that such an explanation of the tunneling gap and ARPES data is misleading. We show that the BCS-like energy gap (or pseudogap) opening in the electronic excitation spectrum of underdoped-to-overdoped cuprates at a characteristic temperature [Formula: see text] and the true superconducting order parameter appearing only at [Formula: see text] are unrelated. The superconducting phenomenon in unconventional cuprate superconductors is fundamentally different from the BCS-like pairing of fermionic quasiparticles, and the superconducting transition temperature [Formula: see text] is not determined by the BCS-like gap formation. The unusual superconducting order parameter in these high-[Formula: see text] materials appears at [Formula: see text] and coexists with the BCS-like gap (or pseudogap) below [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document