arpes data
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Ashutosh S. Wadge ◽  
G Grabecki ◽  
Carmine Autieri ◽  
Bogdan J Kowalski ◽  
Przemysław Iwanowski ◽  
...  

Abstract We have performed electron transport and ARPES measurements on single crystals of transition metal dipnictide TaA$s_{2}$ cleaved along the ($\overline{2}$ 0 1) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [$\overline{2}$ 0 1] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved ($\overline{2}$ 0 1) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level is increased, which is due to a small n-doping of the samples. This shifts the Fermi level closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. E. Dávila ◽  
J. Ávila ◽  
I. R. Colambo ◽  
D. B. Putungan ◽  
D. P. Woodruff ◽  
...  

AbstractNew angle-resolved photoelectron spectroscopy (ARPES) data, recorded at several different photon energies from the Si(111)(7 × 7) surface, show that the well-known S1 and S2 surface states that lie in the bulk band gap are localised at specific (adatom and rest atom) sites on the reconstructed surface. The variations in the photoemission intensity from these states as a function of polar and azimuthal emission angle, and incident photon energy, are not consistent with Fermi surface mapping but are well-described by calculations of the multiple elastic scattering in the final state. This localisation of the most shallowly bound S1 state is consistent with the lack of significant dispersion, with no evidence of Fermi surface crossing, implying that the surface is not, as has been previously proposed, metallic in character. Our findings highlight the importance of final state scattering in interpreting ARPES data, an aspect that is routinely ignored and can lead to misleading conclusions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soohyun Cho ◽  
Jin-Hong Park ◽  
Soonsang Huh ◽  
Jisook Hong ◽  
Wonshik Kyung ◽  
...  

AbstractIt was recently reported that circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES) can be used to observe the Berry curvature in 2H-WSe2 (Cho et al. in Phys Rev Lett 121:186401, 2018). In that study, the mirror plane of the experiment was intentionally set to be perpendicular to the crystal mirror plane, such that the Berry curvature becomes a symmetric function about the experimental mirror plane. In the present study, we performed CD-ARPES on 2H-WSe2 with the crystal mirror plane taken as the experimental mirror plane. Within such an experimental constraint, two experimental geometries are possible for CD-ARPES. The Berry curvature distributions for the two geometries are expected to be antisymmetric about the experimental mirror plane and exactly opposite to each other. Our experimental CD intensities taken with the two geometries were found to be almost opposite near the corners of the 2D projected hexagonal Brillouin zone (BZ) and were almost identical near the center of the BZ. This observation is well explained by taking the Berry curvature or the atomic orbital angular momentum (OAM) into account. The Berry curvature (or OAM) contribution to the CD intensities can be successfully extracted through a comparison of the CD-ARPES data for the two experimental geometries. Thus, the CD-ARPES experimental procedure described provides a method for mapping Berry curvature in the momentum space of topological materials, such as Weyl semimetals.


2020 ◽  
Vol 117 (38) ◽  
pp. 23467-23476
Author(s):  
Sooyoung Jang ◽  
J. D. Denlinger ◽  
J. W. Allen ◽  
V. S. Zapf ◽  
M. B. Maple ◽  
...  

The temperature-dependent evolution of the Kondo lattice is a long-standing topic of theoretical and experimental investigation and yet it lacks a truly microscopic description of the relation of the basic f-c hybridization processes to the fundamental temperature scales of Kondo screening and Fermi-liquid lattice coherence. Here, the temperature dependence of f-c hybridized band dispersions and Fermi-energy f spectral weight in the Kondo lattice system CeCoIn5is investigated using f-resonant angle-resolved photoemission spectroscopy (ARPES) with sufficient detail to allow direct comparison to first-principles dynamical mean-field theory (DMFT) calculations containing full realism of crystalline electric-field states. The ARPES results, for two orthogonal (001) and (100) cleaved surfaces and three different f-c hybridization configurations, with additional microscopic insight provided by DMFT, reveal f participation in the Fermi surface at temperatures much higher than the lattice coherence temperature,T*≈45K, commonly believed to be the onset for such behavior. The DMFT results show the role of crystalline electric-field (CEF) splittings in this behavior and a T-dependent CEF degeneracy crossover belowT*is specifically highlighted. A recent ARPES report of low T Luttinger theorem failure for CeCoIn5is shown to be unjustified by current ARPES data and is not found in the theory.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Subhasish Mandal ◽  
Kristjan Haule ◽  
Karin M. Rabe ◽  
David Vanderbilt

AbstractVarious methods going beyond density functional theory (DFT), such as DFT+U, hybrid functionals, meta-GGAs, GW, and DFT-embedded dynamical mean field theory (eDMFT), have been developed to describe the electronic structure of correlated materials, but it is unclear how accurate these methods can be expected to be when applied to a given strongly correlated solid. It is thus of pressing interest to compare their accuracy as they apply to different categories of materials. Here we introduce a novel paradigm in which a chosen set of beyond-DFT methods is systematically and uniformly tested on a chosen class of materials. For a first application, we choose the target materials to be the binary transition metal oxides FeO, CoO, MnO, and NiO in their antiferromagnetic phase and present a head-to-head comparison of spectral properties as computed using the various methods. We also compare with available experimental angle-resolved photoemission spectroscopy (ARPES), inverse-photoemission spectroscopy, and with optical absorption. For the class of compounds studied here, we find that both B3LYP and eDMFT reproduce the experiments quite well, with eDMFT doing best, in particular when comparing with the ARPES data.


2018 ◽  
Vol 32 (17) ◽  
pp. 1840026 ◽  
Author(s):  
Han-Yong Choi ◽  
Jin Mo Bok

The normal and pairing self-energies are the microscopic quantities which reflect and characterize the underlying interaction in superconductors. The momentum and frequency dependence of the self-energies, therefore, provides the experimental criteria which can single out the long sought-after pairing interaction among many proposed ideas. This line of research to pin down the pairing interaction for the cuprate superconductors has been carried out with some success by analyzing the momentum distribution curves (MDCs) of laser angle-resolved photo-emission spectroscopy (ARPES) data. Some progress and results are presented and compared with theoretical calculations based on leading proposals. Comments are made on the proposed scenarios from the comparisons.


2018 ◽  
Vol 32 (18) ◽  
pp. 1850195
Author(s):  
S. Dzhumanov ◽  
E. X. Karimboev ◽  
Sh. S. Djumanov

The smooth evolution of the energy gap observed in the tunneling and angle-resolved photoemission spectra (ARPES) of high-[Formula: see text] cuprates with lowering the temperature from a pseudogap state above the critical temperature [Formula: see text] to a superconducting state below [Formula: see text], has been poorly interpreted as the evidence that the pseudogap must have the same origin as the superconducting order parameter, and therefore, must be related to [Formula: see text]. We argue that such an explanation of the tunneling gap and ARPES data is misleading. We show that the BCS-like energy gap (or pseudogap) opening in the electronic excitation spectrum of underdoped-to-overdoped cuprates at a characteristic temperature [Formula: see text] and the true superconducting order parameter appearing only at [Formula: see text] are unrelated. The superconducting phenomenon in unconventional cuprate superconductors is fundamentally different from the BCS-like pairing of fermionic quasiparticles, and the superconducting transition temperature [Formula: see text] is not determined by the BCS-like gap formation. The unusual superconducting order parameter in these high-[Formula: see text] materials appears at [Formula: see text] and coexists with the BCS-like gap (or pseudogap) below [Formula: see text].


2018 ◽  
Vol 916 ◽  
pp. 38-42
Author(s):  
Naomi Jane P. Jacosalem ◽  
Leo Cristobal C. Ambolode II

Recent studies identified some factors that contribute to the enhancement ofTcin monolayer FeSe/STO superconductor. It has been claimed that electron doping and electron-phonon coupling play a crucial role in high-Tcsuperconductivity. However, electron doping and electron-phonon mechanism alone cannot fully explain the high-Tcof monolayer FeSe/STO. In this study, we introduce another factor, the Hubbard U correction, and investigate its effect. The electronic structure calculations on single-layer FeSe grown on STO using density functional theory with Hubbard U (DFT+U) is presented. It is found that the Hubbard U suppresses the hole-like band at the Brillouin zone center leading to an electronic structure that resembles the experimental ARPES data. This suggests that electron correlation in monolayer FeSe/STO system plays a crucial role in the origin of high-Tcsuperconductivity.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Shyama Varier Ramankutty ◽  
Jans Henke ◽  
Adriaan Schiphorst ◽  
Rajah Nutakki ◽  
Stephan Bron ◽  
...  

SrMnSb_22 is suggested to be a magnetic topological semimetal. It contains square, 2D Sb planes with non-symmorphic crystal symmetries that could protect band crossings, offering the possibility of a quasi-2D, robust Dirac semi-metal in the form of a stable, bulk (3D) crystal. Here, we report a combined and comprehensive experimental and theoretical investigation of the electronic structure of SrMnSb_22, including the first ARPES data on this compound. SrMnSb_22 possesses a small Fermi surface originating from highly 2D, sharp and linearly dispersing bands (the ‘Y-states’) around the (0,/a)-point in kk-space. The ARPES Fermi surface agrees perfectly with that from bulk-sensitive Shubnikov de Haas data from the same crystals, proving the Y-states to be responsible for electrical conductivity in SrMnSb_22. DFT and tight binding (TB) methods are used to model the electronic states, and both show good agreement with the ARPES data. Despite the great promise of the latter, both theory approaches show the Y-states to be gapped above E_FF, suggesting trivial topology. Subsequent analysis within both theory approaches shows the Berry phase to be zero, indicating the non-topological character of the transport in SrMnSb_22, a conclusion backed up by the analysis of the quantum oscillation data from our crystals.


Sign in / Sign up

Export Citation Format

Share Document