scholarly journals Confined acoustic phonon-mediated spin relaxation in a twodimensional quantum dot in the presence of perpendicular magnetic field

2015 ◽  
Vol 647 ◽  
pp. 012043
Author(s):  
K A Vardanyan ◽  
A L Vartanian ◽  
A G Stepanyan ◽  
A A Kirakosyan
Author(s):  
Francisco J. Peña ◽  
Oscar Negrete ◽  
Gabriel Alvarado Barrios ◽  
David Zambrano ◽  
Alejandro González ◽  
...  

We study the performance of a classical and quantum magnetic Otto cycle with a quantum dot as a working substance using the Fock-Darwin model with the inclusion of the Zeeman interaction. Modulating an external/perpendicular magnetic field, we found in the classical approach an oscillating behavior in the total work that is not perceptible under the quantum formulation. Also, we compare the work and efficiency of this system for different regions of the Entropy, $S(T,B)$, diagram where we found that the quantum version of this engine always shows a reduced performance in comparison to his classical counterpart.


1992 ◽  
Vol 281 ◽  
Author(s):  
Francisco A. P. Osörio ◽  
Oscar HipöLito ◽  
Francois M. Peeters

ABSTRACTThe ground state energy of a shallow impurity placed in the center of a circular quantum dot is studied. The effects of the strength of the confinement potential and a perpendicular magnetic field are investigated theoretically.


Author(s):  
Peihao Huang ◽  
Xuedong Hu

Abstract The electrical control of a spin qubit in a quantum dot relies on spin-orbit coupling (SOC), which could be either intrinsic to the underlying crystal lattice or heterostructure, or extrinsic via, for example, a micro-magnet. In experiments, micromagnets have been used as a synthetic SOC to enable strong coupling of a spin qubit in quantum dots with electric fields. Here we study theoretically the spin relaxation, pure dephasing, spin manipulation, and spin-photon coupling of an electron in a quantum dot due to the synthetic SOC induced spin-orbit mixing. We find qualitative difference in the spin dynamics in the presence of a synthetic SOC compared with the case of the intrinsic SOC. Specifically, spin relaxation due to the synthetic SOC and deformation potential phonon emission (or Johnson noise) shows $B_0^5$ (or $B_0$) dependence with the magnetic field, which is in contrast with the $B_0^7$ (or $B_0^3$) dependence in the case of the intrinsic SOC. Moreover, charge noise induces fast spin dephasing to the first order of the synthetic SOC, which is in sharp contrast with the negligible spin pure dephasing in the case of the intrinsic SOC. These qualitative differences are attributed to the broken time-reversal symmetry ($T$-symmetry) of the synthetic SOC. An SOC with broken $T$-symmetry (such as the synthetic SOC from a micro-magnet) eliminates the ``Van Vleck cancellation'' and causes a finite longitudinal spin-electric coupling that allows the longitudinal coupling between spin and electric field, and in turn allows spin pure dephasing. Finally, through proper choice of magnetic field orientation, the electric-dipole spin resonance via the synthetic SOC can be improved with potential applications in spin-based quantum computing.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Johannes Güttinger ◽  
Christoph Stampfer ◽  
Tobias Frey ◽  
Thomas Ihn ◽  
Klaus Ensslin

Sign in / Sign up

Export Citation Format

Share Document