scholarly journals Numerical simulations of the cavitation phenomena in a Francis turbine at deep part load conditions

2015 ◽  
Vol 656 ◽  
pp. 012074 ◽  
Author(s):  
J Wack ◽  
S Riedelbauch
2021 ◽  
Vol 774 (1) ◽  
pp. 012072
Author(s):  
J Wack ◽  
J Beck ◽  
P Conrad ◽  
F von Locquenghien ◽  
R Jester-Zürker ◽  
...  

Author(s):  
Mohammad Hossein Khozaei ◽  
Arthur Favrel ◽  
Toshitake Masuko ◽  
Naoki Yamaguchi ◽  
Kazuyoshi Miyagawa

Abstract This paper focuses on the generation of twin vortex rope in the draft-tube elbow of a Francis turbine at deep part-load operation through analyzing the results of model tests along with numerical simulations. Model tests, including pressure fluctuations measurements, are conducted over 10 speed factors. By considering the frequency of the pressure fluctuations with respect to the swirl intensity at the runner outlet, the part-load operating range is divided into three regimes, with two clear transitions between each occurring at swirl numbers 0.4 and 1.7. For operating conditions with a swirl number S>0.4, a linear correlation between the frequency of the precessing vortex core and the swirl number is established. During deep part-load regime (S>1.7), low-frequency pressure fluctuations appear. Their frequency feature another linear correlation with the swirl number. Unsteady CFD simulation of the full domain is performed to elucidate the generation mechanisms of the low-frequency fluctuations. By tracking the center of the vortical structures along the draft-tube, generation of three vortices in the elbow responsible for the pressure fluctuations at the lowest frequency is highlighted: the main PVC hits the draft-tube wall in the elbow resulting in its break down into three vortices rotating with half the rotational speed of the PVC. Two of the vortices rotate with opposite angular position, constituting a structure of twin vortices. The periodic rotation of these three vortices in the elbow induces the low-frequency pressure fluctuations.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3894
Author(s):  
Arthur Favrel ◽  
Nak-Joong Lee ◽  
Tatsuya Irie ◽  
Kazuyoshi Miyagawa

This paper proposes an original approach to investigate the influence of the geometry of Francis turbines draft tube on pressure fluctuations and energy losses in off-design conditions. It is based on Design of Experiments (DOE) of the draft tube geometry and steady/unsteady Computational Fluid Dynamics (CFD) simulations of the draft tube internal flow. The test case is a Francis turbine unit of specific speed Ns=120 m-kW which is required to operate continuously in off-design conditions, either with 45% (part-load) or 110% (full-load) of the design flow rate. Nine different draft tube geometries featuring a different set of geometrical parameters are first defined by an orthogonal array-based DOE approach. For each of them, unsteady and steady CFD simulations of the internal flow from guide vane to draft tube outlet are performed at part-load and full-load conditions, respectively. The influence of each geometrical parameter on both the flow instability and resulting pressure pulsations, as well as on energy losses in the draft tube, are investigated by applying an Analysis of Means (ANOM) to the numerical results. The whole methodology enables the identification of a set of geometrical parameters minimizing the pressure fluctuations occurring in part-load conditions as well as the energy losses in both full-load and part-load conditions while maintaining the requested pressure recovery. Finally, the results of the CFD simulations with the final draft tube geometry are compared with the results estimated by the ANOM, which demonstrates that the proposed methodology also enables a rough preliminary estimation of the draft tube losses and pressure fluctuations amplitude.


Sign in / Sign up

Export Citation Format

Share Document