scholarly journals Numerical study of metal foam heat sinks under uniform impinging flow

2017 ◽  
Vol 796 ◽  
pp. 012002 ◽  
Author(s):  
A Andreozzi ◽  
N Bianco ◽  
M Iasiello ◽  
V Naso
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
S. S. Feng ◽  
J. J. Kuang ◽  
T. J. Lu ◽  
K. Ichimiya

A numerical investigation was carried out to characterize the thermal performance of finned metal foam heat sinks subject to an impinging air flow. The main objective of the study was to quantify the effects of all relevant configurational parameters (channel length, channel width, fin thickness, and fin height) of the heat sink upon the thermal performance. Open-cell aluminum foam having fixed porosity of 0.9118 and fixed pore density of five pores per inch (PPI) was used in the study. A previously validated model based on the porous medium approach was employed for the numerical simulation. Various simulation cases for different combinations of channel parameters were carried out to obtain the Nusselt number correlation. Based on the inviscid impinging flow, a pressure drop correlation was derived for impinging flow in finned metal foam heat sinks. By using these correlations, the thermal performance of finned metal foam heat sinks was compared with the conventional plate-fin heat sinks. It was demonstrated that the finned metal foam heat sinks outperformed the plate-fin heat sinks on the basis of given weight or given pumping power.


Author(s):  
Felipe Henrique Rafael ◽  
Vilson Silva ◽  
Bruno de Campos Salles Anselmo ◽  
Sandro Metrevelle Marcondes de Lima e Silva
Keyword(s):  

Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Francesco Moriello ◽  
Simone Mancin

Abstract This study attempts to control the temperature peaks due to the operation of the battery itself by examining a two-dimensional model to numerically investigate the thermal control of a lithium battery of a commercial electric car. The battery has the dimensions of 8 cm × 31 cm × 67 cm and its capacity is equal to 232 Ah with 5.3 kWh. Thermal control is achieved by means of an internal layer of copper or aluminum foam and phase change material (paraffin), placed on the top of the battery and the external surfaces are cooled by a convective flow. The governing equations, written assuming the local thermal equilibrium for the metal foam, are solved with the finite volume method using the commercial code Ansys-Fluent. Different cases are simulated for different thicknesses of the thermal control system and external convective heat transfer coefficient. The results are given in terms of temperature fields, liquid fraction, surface temperature profiles as a function of time and temperature distributions along the outer surface of the battery for the different cases. In addition, some comparisons with pure PCM are provided to show the advantages of the composite thermal control system with PCM inside the metal foam.


2021 ◽  
Author(s):  
Bernardo Buonomo ◽  
Furio Cascetta ◽  
Anna Di Pasqua ◽  
Oronzio Manca ◽  
Sergio Nappo

Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 143
Author(s):  
Carlo Nonino ◽  
Stefano Savino

An in-house finite element method (FEM) procedure is used to carry out a numerical study on the thermal behavior of cross-flow double-layered microchannel heat sinks with an unequal number of microchannels in the two layers. The thermal performance is compared with those yielded by other more conventional flow configurations. It is shown that if properly designed, i.e., with several microchannels in the top layer smaller than that in the bottom layer, cross-flow double-layered microchannel heat sinks can provide an acceptable thermal resistance and a reasonably good temperature uniformity of the heated base with a header design that is much simpler than that required by the counter-flow arrangement.


Sign in / Sign up

Export Citation Format

Share Document