scholarly journals Generalized soliton solutions to generalized KdV equation with variable coefficients by Exp-function method

2008 ◽  
Vol 96 ◽  
pp. 012022 ◽  
Author(s):  
S-M Yu ◽  
L-X Tian
2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Alvaro H. Salas S ◽  
Cesar A. Gómez S

The general projective Riccati equation method and the Exp-function method are used to construct generalized soliton solutions and periodic solutions to special KdV equation with variable coefficients and forcing term.


2014 ◽  
Vol 548-549 ◽  
pp. 1196-1200
Author(s):  
Yong Mei Bao ◽  
Siqintana Bao

In order to construct exact soliton solutions of nonlinear evolution equations with variable coefficients. By using a transformation, the variable coefficient KdV equation with forced Term is reduced to nonlinear ordinary differential equation (NLODE), after that, a number of exact solitons solutions of variable coefficient KdV equation with forced Term are obtained by using the equation shorted in NLODE. As it showed above, this kind of method can be applied in solving a large number of nonlinear evolution equations.


Author(s):  
Supratim Das ◽  
Dibyendu Ghosh

We apply the AKNS hierarchy to derive the generalized KdV equation andthe generalized modified KdV equation with variable-coefficients. We system-atically derive new exact solutions for them. The solutions turn out to beexpressible in terms of doubly-periodic Jacobian elliptic functions.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750012 ◽  
Author(s):  
Ya-Le Wang ◽  
Yi-Tian Gao ◽  
Shu-Liang Jia ◽  
Zhong-Zhou Lan ◽  
Gao-Fu Deng ◽  
...  

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional generalized variable-coefficient shallow water wave equation which can be reduced to several integrable equations, such as the Korteweg–de Vries (KdV) equation and the Calogero–Bogoyavlenskii–Schiff (CBS) equation. Bilinear forms, Bäcklund transformation, Lax pair and infinite conservation laws are derived based on the binary Bell polynomials. N-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the N-soliton interaction in the scaled space and time coordinates; (ii) positions of the solitons depend on the sign of wave numbers after each interaction; (iii) interaction of the solitons is elastic, i.e. the amplitude, velocity and shape of each soliton remain invariant after each interaction except for a phase shift.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Cesar A. Gómez ◽  
Alvaro H. Salas

The variational iteration algorithm combined with the exp-function method is suggested to solve the generalized Benjamin-Bona-Mahony equation (BBM) with variable coefficients. Periodic and soliton solutions are formally derived in a general form. Some particular cases are considered.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Shumaila Javeed ◽  
Khurram Saleem Alimgeer ◽  
Sidra Nawaz ◽  
Asif Waheed ◽  
Muhammad Suleman ◽  
...  

This paper is based on finding the exact solutions for Burger’s equation, Zakharov-Kuznetsov (ZK) equation and Kortewegde vries (KdV) equation by utilizing exponential function method that depends on the series of exponential functions. The exponential function method utilizes the homogeneous balancing principle to find the solutions of nonlinear equations. This method is simple, wide-reaching and helpful for finding the exact solution of nonlinear conformable PDEs.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Xianbin Wu ◽  
Weiguo Rui ◽  
Xiaochun Hong

We study a generalized KdV equation of neglecting the highest order infinitesimal term, which is an important water wave model. Some exact traveling wave solutions such as singular solitary wave solutions, semiloop soliton solutions, dark soliton solutions, dark peakon solutions, dark loop-soliton solutions, broken loop-soliton solutions, broken wave solutions of U-form and C-form, periodic wave solutions of singular type, and broken wave solution of semiparabola form are obtained. By using mathematical softwareMaple, we show their profiles and discuss their dynamic properties. Investigating these properties, we find that the waveforms of some traveling wave solutions vary with changes of certain parameters.


Sign in / Sign up

Export Citation Format

Share Document