scholarly journals Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

2018 ◽  
Vol 962 ◽  
pp. 012044 ◽  
Author(s):  
Amir Hamzah ◽  
Suwoto ◽  
Anis Rohanda ◽  
Hery Adrial ◽  
Syaiful Bakhri ◽  
...  
Author(s):  
M. Kolluri ◽  
F. H. E. de Haan – de Wilde ◽  
H. S. Nolles ◽  
A. J. M. de Jong

Abstract The reactor vessel of the High Flux Reactor (HFR) in Petten has been fabricated from Al 5154-O alloy grade with a maximum Mg content of 3.5 wt. %. The vessel experiences large amount of neutron fluences (notably at hot spot), of the order of 1027 n/m2, during its operational life. Substantial damage to the material’s microstructure and mechanical properties can occur at these high fluence conditions. To this end, a dedicated surveillance program: SURP (SURveillance Program) is executed to understand, predict and measure the influence of neutron radiation damage on the mechanical properties of the vessel material. In the SURP program, test specimens fabricated from representative HFR vessel material are continuously irradiated in two specially designed experimental rigs. A number of surveillance specimens are periodically extracted and tested to evaluate the changes in fracture toughness properties of the vessel as function neutron fluence. The surveillance testing results of test campaigns performed until 2015 were published previously in [1, 2]. The current paper presents fracture toughness and SEM results from the recent surveillance campaign performed in 2017. The fracture toughness specimen tested in this campaign received a thermal neutron fluence of 13.56 x1026 n/m2, which is ∼8.9 × 1025 n/m2 more than the thermal fluence received by the specimen tested in SURP 2015 campaign. These results from this campaign have shown no change in the fracture toughness from the values measured in the previous SURP campaign. The SEM observations are performed to study the fracture surface, to measure (by WDS) the transmutation Si formed near crack tip and to investigate various inclusions in the microstructure. SEM fracture surface investigation revealed a tortuous (bumpy) fracture surface constituting micro-scale dimples over majority of the fracture area. Islands of cleavage facets and secondary cracks have been observed as well. EDS analysis of various inclusions in the microstructure revealed presence of Fe rich inclusions and Mg-Si rich precipitates. Additionally, inclusions rich in Al-Mg-Cr-Ti were identified. Finally, changes in mechanical properties of Al 5154-O alloy with an increase in neutron fluence (or transmutation Si) are discussed in correlation with SEM microstructure and fracture morphology observed in SEM. TEM investigation of precipitate microstructure is ongoing and those results will be published in future.


2008 ◽  
Vol 130 (02) ◽  
pp. 34-38
Author(s):  
Lee S. Langston

This paper describes various high-level nuclear researches including nuclear-fuelled pebbles that are being conducted across South Africa. The pebbles are ingenious industrial products, designed to passively limit the amount of heat unleashed by the nuclear fission reactions that drive the reactor. The spheres that give the pebble bed reactor its name enclose fissionable uranium inside layers that serve various roles, such as moderating fission, containing pressure, and accommodating deformation of the core. Nuclear-fuelled pebbles are introduced at the top of the reactor vessel and slowly wend their way down through the annular-packed bed under the action of gravity to the bottom of the reactor vessel. In a towering building at the headquarters of Nesca in Pelindaba, South Africa, reactor components are being tested for their ability to work with high-pressure helium. Those parts will go in the pebble bed modular reactor power plant to be constructed at Koeburg, near Cape Town. The plan of the pebble bed reactor power plant will use the helium coolant to run the turbine directly rather than heat a secondary fluid, as in a water reactor.


Author(s):  
M. Kolluri ◽  
F. H. E. de Haan-de Wilde ◽  
H. S. Nolles ◽  
A. J. M. de Jong ◽  
F. A. van den Berg

The reactor vessel of the High Flux Reactor (HFR) in Petten has been fabricated from Al 5154 - O alloy grade with a maximum Mg content of 3.5 wt. %. The vessel experiences large amount of neutron fluences (notably at hot spot), of the order of 1027 n/m2, during its operational life. Substantial damage to the material’s microstructure and mechanical properties can occur at these high fluence conditions. To this end, a dedicated surveillance program: SURP (SURveillance Program) is executed to understand, predict and measure the influence of neutron radiation damage on the mechanical properties of the vessel material. In the SURP program, test specimens fabricated from representative HFR vessel material are continuously irradiated in two specially designed experimental rigs. A number of surveillance specimens are periodically extracted and tested to evaluate the changes in fracture toughness properties of the vessel as a function neutron fluence. The surveillance testing results of test campaigns performed until 2009 were already published by N. V. Luzginova et. al. [1]. The current paper presents results from the two recent surveillance campaigns performed in 2014 and 2015. The fracture toughness and tensile testing results are reported. Changes in mechanical properties of Al 5154-O alloy with an increase in neutron fluence are discussed in correlation with the irradiation damage microstructure observed in TEM and the fracture morphology observed in SEM. The HFR surveillance testing results are compared to the historically published results on irradiated aluminum alloys and conclusions about the evolution of embrittlement trends in relation with irradiation induced damage mechanisms in HFR vessel are drawn at the end.


2004 ◽  
Vol 261-263 ◽  
pp. 1647-1652
Author(s):  
Sung Gyu Jung ◽  
In Gyu Park ◽  
Chang Soon Lee ◽  
Myung Jo Jhung

To prevent the potential failure of the reactor pressure vessel (RPV), it is requested to operate RPV according to the pressure-temperature (P-T) limit curve during the heat-up and cool-down process. The procedure to make the P-T limit curve was suggested in the ASME Code but it has been known to be too conservative for some cases. In this paper, the conservatism of the ASME Code Sec. XI, App. G was investigated by performing a series of sensitivity analyses. The effects of six parameters such as crack depth, crack orientation, clad thickness, fracture toughness, cooling rate, and neutron fluence were analyzed. The results of P-T limit curves are compared to one another.


Author(s):  
Hery Adrial ◽  
Amir Hamzah ◽  
Entin Hartini

GAMMA DOSE RATE ANALYSIS IN BIOLOGICAL SHIELDING OF HTGR-10 MWth PEBBLE BED REACTOR. HTGR-10 MWth is a high-temperature gas-cooled reactor. The fuel and moderator are pebble shaped with a radius of 3 cm. One fuel pebble consists of thousands of UO2 kernels with a density of 10.4 gram/cc and the enrichment rate of 17%. The core of HTGR-10 MWth is the center of origin of neutrons and gamma radiation resulting from the interaction of neutrons with pebble fuel, moderator and biological shield. The various types of radiations generated from such nuclear reactions should be monitored to ensure the safety of radiation workers. This research was conducted using MCNP-6 Program package with the aim to calculate and analyze gamma radiation dose in biological shield of HTGR-10 MWth. In this study, the biological shield is divided into 10 equal segments. The first step of the research is to benchmark the created program against the critical height of HTR-10. The results of the benchmarking show an error rate of ± 1.1327%, while the critical core height of HTGR 10 MWth for the ratio of pebble fuel and pebble moderator (F:M) of 52: 48 occurs at a height of 134 cm. The rate of gamma dose at the core is 3.0052E + 05 mSv/hr. On the biological shield made of regular concrete with a density of 2.3 grams/cc, the rate of gamma dose decreases according to an equation y = 0.0042 e-0.03x. Referring to Perka Bapeten no 4 of 2013, the safe limits for workers and radiation protection officers will be achieved if the minimum thickness of biological shield is 115 cm with gamma dose rate of 0 mSv/hour.Keywords: Gamma dose rate, HTGR 10 MWth, biological shield, pebble


Sign in / Sign up

Export Citation Format

Share Document