scholarly journals Joint elastic side-scattering LIDAR and Raman LIDAR measurements of aerosol optical properties in south east Colorado

2017 ◽  
Vol 12 (03) ◽  
pp. P03008-P03008 ◽  
Author(s):  
L. Wiencke ◽  
V. Rizi ◽  
M. Will ◽  
C. Allen ◽  
A. Botts ◽  
...  
2017 ◽  
Author(s):  
Rei Kudo ◽  
Tomoaki Nishizawa ◽  
Toshinori Aoyagi ◽  
Yasushi Fujiyoshi ◽  
Yuji Higuchi ◽  
...  

2015 ◽  
Vol 8 (9) ◽  
pp. 3789-3809 ◽  
Author(s):  
K. Baibakov ◽  
N. T. O'Neill ◽  
L. Ivanescu ◽  
T. J. Duck ◽  
C. Perro ◽  
...  

Abstract. We present recent progress on nighttime retrievals of aerosol and cloud optical properties over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, a star photometer was employed to acquire aerosol optical depth (AOD) data, while vertical aerosol and cloud backscatter profiles were measured using the CANDAC Raman Lidar (CRL). We used a simple backscatter coefficient threshold (βthr) to distinguish aerosols from clouds and, assuming that aerosols were largely fine mode (FM)/sub-micron, to distinguish FM aerosols from coarse mode (CM)/super-micron cloud or crystal particles. Using prescribed lidar ratios, we computed FM and CM AODs that were compared with analogous AODs estimated from spectral star photometry. We found (βthr dependent) coherences between the lidar and star photometer for both FM events and CM cloud and crystal events with averaged, FM absolute differences being


2020 ◽  
Vol 237 ◽  
pp. 02034
Author(s):  
Shishir Kumar Singh ◽  
Jaswant ◽  
S.R. Radhakrishnan ◽  
Davender Sethi ◽  
Chhemendra Sharma

The aerosol optical properties have been investigated using the Raman lidar system for the month of November 2018 at the western Himalayan station of Palampur. Before deriving the optical properties, the lidar data has been applied with initial pre-processing such as Dead time correction, atmospheric noise correction, temporal and spatial averaging, range correction, gluing etc. The optical properties such as backscatter coefficient, extinction coefficient and linear depolarization ratio have been derived by using the inversion algorithm proposed by Fernald. The results show that the backscatter coefficient was found in the range from 9.00E-9 m−1sr−1 to 4.97E-6 m−1sr−1 and the extinction coefficient was found in the range from 3.16E-7m-1 to 1.74E-4m-1. The Linear depolarization ratio was in the range from 0.0179 to 0.621 with lower values at near heights suggesting the dominance of spherical particles at the lower heights. We have also observed a cloud layer at a height of 9.5 km to 12.1 km with high depolarization ratio during the observation period on 22/11/2018.


2003 ◽  
Vol 108 (D13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Matthew J. McGill ◽  
Dennis L. Hlavka ◽  
William D. Hart ◽  
Ellsworth J. Welton ◽  
James R. Campbell

Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 21234 ◽  
Author(s):  
Francisco Navas-Guzmán ◽  
Juan Antonio Bravo-Aranda ◽  
Juan Luis Guerrero-Rascado ◽  
María José Granados-Muñoz ◽  
LUCAS Alados-Arboledas

2013 ◽  
Vol 116 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Jia Su ◽  
Yonghua Wu ◽  
M. Patrick McCormick ◽  
Liqiao Lei ◽  
Robert B. Lee

2011 ◽  
Vol 11 (1) ◽  
pp. 175-190 ◽  
Author(s):  
M. Sicard ◽  
F. Rocadenbosch ◽  
M. N. M. Reba ◽  
A. Comerón ◽  
S. Tomás ◽  
...  

Abstract. The annual and seasonal variability of aerosol optical properties observed by means of a Raman lidar over Northeastern Spain has been assessed. The lidar representativeness has first been checked against sun-photometer measurements in terms of aerosol optical thickness. Then the annual cycle and the seasonal variability of the planetary boundary layer aerosol optical thickness and its fraction compared to the columnar optical thickness, the lidar ratio, the backscatter-related Ångström exponent and the planetary boundary layer height are analyzed and discussed. Winter and summer mean profiles of extinction, backscatter and lidar ratio retrieved with the Raman algorithm are presented. The analysis shows the impact of most of the natural events (Saharan dust intrusions, wildfires, etc.) and meteorological situations (summer anticyclonic situation, the formation of the Iberian thermal low, winter long-range transport from North Europe and/or North America, re-circulation flows, etc.) occurring in the Barcelona area. A detailed study of a special event including a combined intrusion of Saharan dust and biomass-burning particles proves the suitability of combining the retrieval of aerosol optical properties from Raman and pure elastic lidar measurements to discriminate spatially different types of aerosols and to follow their spatial and temporal evolution.


2018 ◽  
Vol 176 ◽  
pp. 05029
Author(s):  
Ourania Soupiona ◽  
Maria Mylonaki ◽  
Alexandros Papayannis ◽  
Athina Argyrouli ◽  
Panayotis Kokkalis ◽  
...  

A comprehensive analysis of the seasonal variability of the optical properties of Saharan dust aerosols over Athens, Greece, is presented for a 17-year time period (2000-2016), as derived from multi-wavelength Raman lidar measurements (57 dust events with more than 80 hours of measurements). The profiles of the derived aerosol optical properties (aerosol backscatter and extinction coefficients, lidar ratio and aerosol Ångström exponent) at 355 nm are presented. For these dust events we found a mean value of the lidar ratio of ~52±13 sr at 355 nm and of ~58±8 sr (not shown) at 532 nm (2-4 km a.s.l. height). For our statistical analysis, presented here, we used monthly-mean values and time periods under cloud-free conditions. The number of dust events was greatest in late spring, summer, and early autumn periods. In this paper we also present a selected case study (04 April 2016) of desert dust long-range transport from the Saharan desert.


Sign in / Sign up

Export Citation Format

Share Document