scholarly journals Does sea ice influence Greenland ice sheet surface-melt?

2009 ◽  
Vol 4 (2) ◽  
pp. 024011 ◽  
Author(s):  
Asa K Rennermalm ◽  
Laurence C Smith ◽  
Julienne C Stroeve ◽  
Vena W Chu
2017 ◽  
Author(s):  
Julienne C. Stroeve ◽  
John R. Mioduszewski ◽  
Asa Rennermalm ◽  
Linette N. Boisvert ◽  
Marco Tedesco ◽  
...  

Abstract. Rapid decline in Arctic sea ice cover in the 21st century may have wide-reaching effects on the Arctic climate system, including the Greenland ice sheet mass balance. Here, we investigate whether local changes in sea ice around the Greenland ice sheet have had an impact on Greenland surface melt. Specifically, we investigate the relationship between sea ice concentration, the timing of melt onset and open water fraction surrounding Greenland with ice sheet surface melt using a combination of remote sensing observations, and outputs from a reanalysis model and a regional climate model for the period 1979–2015. Statistical analysis points to covariability between Greenland ice sheet surface melt and sea ice within Baffin Bay and Davis Strait. While some of this covariance can be explained by simultaneous influence of atmospheric circulation anomalies on both the sea ice cover and Greenland melt, within Baffin Bay we find a modest correlation between detrended melt onset over sea ice and the adjacent ice sheet melt onset. This correlation appears to be related to increased transfer of sensible and latent heat fluxes from the ocean to the atmosphere in early sea ice melt years, increasing temperatures and humidity over the ice sheet that in turn initiate ice sheet melt.


2017 ◽  
Vol 11 (5) ◽  
pp. 2363-2381 ◽  
Author(s):  
Julienne C. Stroeve ◽  
John R. Mioduszewski ◽  
Asa Rennermalm ◽  
Linette N. Boisvert ◽  
Marco Tedesco ◽  
...  

Abstract. Rapid decline in Arctic sea ice cover in the 21st century may have wide-reaching effects on the Arctic climate system, including the Greenland ice sheet mass balance. Here, we investigate whether local changes in sea ice around the Greenland ice sheet have had an impact on Greenland surface melt. Specifically, we investigate the relationship between sea ice concentration, the timing of melt onset and open-water fraction surrounding Greenland with ice sheet surface melt using a combination of remote sensing observations, and outputs from a reanalysis model and a regional climate model for the period of 1979–2015. Statistical analysis points to covariability between Greenland ice sheet surface melt and sea ice within Baffin Bay and Davis Strait. While some of this covariance can be explained by simultaneous influence of atmospheric circulation anomalies on both the sea ice cover and Greenland melt, within Baffin Bay we find a modest correlation between detrended melt onset over sea ice and the adjacent ice sheet melt onset. This correlation appears to be related to increased transfer of sensible and latent heat fluxes from the ocean to the atmosphere in early sea ice melt years, increasing temperatures and humidity over the ice sheet that in turn initiate ice sheet melt.


Author(s):  
Robert S. Fausto ◽  
Dirk Van As ◽  
Jens A. Antoft ◽  
Jason E. Box ◽  
William Colgan

The Greenland ice sheet is an excellent observatory for global climate change. Meltwater from the 1.8 million km2 large ice sheet infl uences oceanic temperature and salinity, nutrient fl uxes and global sea level (IPCC 2013). Surface refl ectivity is a key driver of surface melt rates (Box et al. 2012). Mapping of diff erent ice-sheet surface types provides a clear indicator of where changes in ice-sheet surface refl ectivity are most prominent. Here, we present an updated version of a surface classifi cation algorithm that utilises NASA’s Moderateresolution Imaging Spectroradiometer (MODIS) sensor on the Terra satellite to systematically monitor ice-sheet surface melt (Fausto et al. 2007). Our aim is to determine the areal extent of three surface types over the 2000–2014 period: glacier ice, melting snow (including percolation areas) and dry snow (Cuff ey & Paterson 2010). Monthly 1 km2 resolution surface-type grids can be downloaded via the CryoClim internet portal (www.cryoclim.net). In this report, we briefl y describe the updated classifi cation algorithm, validation of surface types and inter-annual variability in surface types.


2021 ◽  
Author(s):  
Raymond Sellevold ◽  
Jan T. M. Lenaerts ◽  
Miren Vizcaino

AbstractThe Arctic is the region on Earth that is warming the fastest. At the same time, Arctic sea ice is reducing while the Greenland ice sheet (GrIS) is losing mass at an accelerated pace. Here, we study the seasonal impact of reduced Arctic sea ice on GrIS surface mass balance (SMB), using the Community Earth System Model version 2.1 (CESM2), which features an advanced, interactive calculation of SMB. Addressing the impact of sea-ice reductions on the GrIS SMB from observations is difficult due to the short observational records. Also, signals detected using transient climate simulations may be aliases of other forcings. Here, we analyze dedicated simulations from the Polar Amplification Model Intercomparison Project with reduced Arctic sea ice and compare them with preindustrial sea ice simulations while keeping all other forcings constant. In response to reduced sea ice, the GrIS SMB increases in winter due to increased precipitation, driven by the more humid atmosphere and increasing cyclones. In summer, surface melt increases due to a warmer, more humid atmosphere providing increased energy transfer to the surface through the sensible and latent heat fluxes, which triggers the melt-albedo feedback. Further, warming occurs throughout the entire troposphere over Baffin Bay. This deep warming results in regional enhancement of the 500 hPa geopotential heights over the Baffin Bay and Greenland, increasing blocking and heat advection over the GrIS’ surface. This anomalous circulation pattern has been linked to recent increases in the surface melt of the GrIS.


2010 ◽  
Vol 36 (1-2) ◽  
pp. 139-159 ◽  
Author(s):  
Xavier Fettweis ◽  
Georges Mabille ◽  
Michel Erpicum ◽  
Samuel Nicolay ◽  
Michiel Van den Broeke

2011 ◽  
Vol 57 (204) ◽  
pp. 621-628 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Thomas L. Mote ◽  
Glen E. Liston

AbstractObserved meteorological data and a high-resolution (5 km) model were used to simulate Greenland ice sheet surface melt extent and trends before the satellite era (1960–79) and during the satellite era through 2010°. The model output was compared with passive microwave satellite observations of melt extent. For 1960–2010 the average simulated melt extent was 15 ± 5%. For the period 1960–72, simulated melt extent decreased by an average of 6%, whereas 1973–2010 had an average increase of 13%, with record melt extent in 2010. The trend in simulated melt extent since 1972 indicated that the melt extent in 2010 averaged twice that in the early 1970s. The maximum and mean melt extents for 2010 were 52% (∼9.5 × 105 km2) and 28% (∼5.2 × 105 km2), respectively, due to higher-than-average winter and summer temperatures and lower-than-average winter precipitation. For 2010, the southwest Greenland melt duration was 41–60 days longer than the 1960–2010 average, while the northeast Greenland melt duration was up to 20 days shorter. From 1960 to 1972 the melting period (with a >10% melt extent) decreased by an average of 3 days a−1. After 1972, the period increased by an average of 2 days a−1, indicating an extended melting period for the ice sheet of about 70 days: 40 and 30 days in spring and autumn, respectively.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masashi Niwano ◽  
Akihiro Hashimoto ◽  
Teruo Aoki

2013 ◽  
Vol 34 (4) ◽  
pp. 1022-1037 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Sebastian H. Mernild ◽  
John Cappelen ◽  
Mads H. Ribergaard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document