oceanic climate
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Changyu Li ◽  
Jianping Huang ◽  
Lei Ding ◽  
Yu Ren ◽  
Linli An ◽  
...  

AbstractThe measurement of atmospheric O2 concentrations and related oxygen budget have been used to estimate terrestrial and oceanic carbon uptake. However, a discrepancy remains in assessments of O2 exchange between ocean and atmosphere (i.e. air-sea O2 flux), which is one of the major contributors to uncertainties in the O2-based estimations of the carbon uptake. Here, we explore the variability of air-sea O2 flux with the use of outputs from Coupled Model Intercomparison Project phase 6 (CMIP6). The simulated air-sea O2 flux exhibits an obvious warming-induced upward trend (∼1.49 Tmol yr−2) since the mid-1980s, accompanied by a strong decadal variability dominated by oceanic climate modes. We subsequently revise the O2-based carbon uptakes in response to this changing air-sea O2 flux. Our results show that, for the 1990–2000 period, the averaged net ocean and land sinks are 2.10±0.43 and 1.14±0.52 GtC yr−1 respectively, overall consistent with estimates derived by the Global Carbon Project (GCP). An enhanced carbon uptake is found in both land and ocean after year 2000, reflecting the modification of carbon cycle under human activities. Results derived from CMIP5 simulations also investigated in the study allow for comparisons from which we can see the vital importance of oxygen dataset on carbon uptake estimations.


2022 ◽  
Vol 14 (1) ◽  
pp. 563
Author(s):  
Eduardo Galán Navia-Osorio ◽  
Fernando R. Mazarrón ◽  
César Porras-Amores ◽  
Ignacio Cañas

The industrial sector needs solutions and strategies that allow buildings to reduce their energy consumption and develop their daily business activities. This paper discusses the long-term monitoring measures of indoor thermal conditions in a warehouse with zero energy consumption. The objective is to promote the use of passive design strategies within the industrial sector by analyzing an example of the feasibility of achieving controlled environmental conditions with zero energy consumption. In total, more than a million data points were processed and analyzed in different periods of the year. Experimental measurements showed strong gradients in the vertical distribution of temperature, this being a key aspect of the general behavior of the indoor environment of the warehouse. A standard comparison variable was developed to quantify the monthly and daily evolution of vertical stratification of the air to explain in detail the thermal behavior of the warehouse throughout the year. The results showed the efficacy of the design of these constructions to mitigate the high temperatures typical in a Mediterranean-Oceanic climate. This example of ingenuity in passive design demonstrates how, by combining the right strategies, the desired conditions can be obtained without any energy consumption.


2021 ◽  
Vol 70 (4) ◽  
pp. 325-337
Author(s):  
Anna Kis ◽  
◽  
Rita Pongrácz ◽  

Snow-related variables are analysed in the present paper in the period 1901‒2010 on the basis of the ERA-20C dataset. Relationships between different snow characteristics, temperature and the NAO index are investigated on monthly, yearly and decadal scales for eight regions within Europe representing different climatic types (i.e. oceanic, continental, polar) to analyse the differences and similarities between them depending on the climatic conditions. According to our results, the ratio of snow (i.e. snowfall compared to total precipitation) can reach 1 in winter in the colder, northern regions, whereas it is about 0.6 in the continental areas of Central Europe, even in the coldest months. During a strong positive phase of NAO more snow falls in the northern regions of Europe due to the large-scale circulation characteristics. When a negative NAO phase occurs, the temperature and snowfall anomalies are the opposite in northern Europe. The highest temperature values generally occurred after 2000, and the snowfall amount was smaller in the first decades of the 21st century compared to the previous decades. The relationship between temperature and snowfall is the strongest in autumn in the colder regions; in spring in the continental areas and in winter in the oceanic climate.


2021 ◽  
Vol 13 (23) ◽  
pp. 4950
Author(s):  
Francisco Ferrera-Cobos ◽  
Jose M. Vindel ◽  
Ousmane Wane ◽  
Ana A. Navarro ◽  
Luis F. Zarzalejo ◽  
...  

This work addresses the development of a PAR model in the entire territory of mainland Spain. Thus, a specific model is developed for each location of the study field. The new PAR model consists of a combination of the estimates of two previous models that had unequal performances in different climates. In fact, one of them showed better results with Mediterranean climate, whereas the other obtained better results under oceanic climate. Interestingly, the new PAR model showed similar performance when validated at seven stations in mainland Spain with Mediterranean or oceanic climate. Furthermore, all validation slopes ranged from 0.99 to 1.00; the intercepts were less than 3.70 μmol m−2 s−1; the R2 were greater than 0.988, while MBE was closer to zero percent than −0.39%; and RMSE were less than 6.21%. The estimates of the PAR model introduced in this work were then used to develop PAR maps over mainland Spain that represent daily PAR averages of each month and a full year at all locations in the study field.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1717
Author(s):  
Alvaro Delgado ◽  
Muriel Quinet ◽  
Enrique Dapena

Most apple trees (Malus domestica Borkh.) are self-incompatible and fruit yield depends on cross-pollination between genetically compatible cultivars with synchronous flowering. Flowering intensity can vary strongly among years due to the biennial bearing habit of the cultivars. The knowledge of the phenological stages and floral and pollen characteristics is essential to select suitable pollen donors. We evaluated the phenotypic variability of flowering-related traits (i.e., flowering phenology, flowering intensity, pollen production and pollen quality) in 45 apple cultivars over two successive flowering seasons. Large phenotypic variability was found among the studied cultivars indicating that the local germplasm collection provides a good source of genetic and phenotypic diversity. However, low correlations were observed between floral biology traits and, consequently, the improvement in one trait seems not to affect other traits. Some of the cultivars such as ‘Perurico’ and ‘Raxila Dulce’ regularly produced copious amounts of high-quality pollen which can improve the pollen load dispersion leading to a most effective pollination process. We did not identify statistically significant correlations between pollen attributes and the biennial bearing phenomenon. The large variation in bloom dates from year-to-year observed under a typical Oceanic climate makes it advisable to combine cultivars in new plantings.


2021 ◽  
Vol 13 (17) ◽  
pp. 9491
Author(s):  
Manuel Carpio ◽  
David Carrasco

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.


2021 ◽  
Vol 17 (3) ◽  
pp. 1051-1064
Author(s):  
Jacek Pawlak

Abstract. Speleothems are an important source of palaeoclimatic information about the terrestrial environment. The basic advantages of speleothems are their high preservation potential, the possibility of precise dating using the uranium-series (U-series) method, and many different proxies, such as stable isotopes, trace elements, and microfabrics, which can be interpreted in terms of palaeoclimatic conditions. Currently, central Europe is located in a transitional climate zone under the influence of both oceanic and continental climates. However, in the past, the region could have been under a stronger continental climate influence during cold glacial episodes or a stronger oceanic climate influence during wetter interglacial episodes. Long-term speleothem records can add new beneficial data about past climate changes in the region. The multiproxy record of the JS9 stalagmite, collected in the Demänová Cave system (Slovakia), represents a ca. 60 kyr period (143–83 ka). A multiproxy interpretation of the JS9 record shows that long-term δ18O trends can be interpreted as global/regional temperature changes, whereas short-term δ18O signals reflect changes in humidity. In contrast to the records from the Alps and the northern Tatra Mountains, the δ18O record of speleothem JS9 shows instantaneous decreasing episodes during Termination II. This indicates that the Carpathian Belt was an important climatic barrier at that time.


2021 ◽  
pp. 1-51
Author(s):  
Michela Biasutti ◽  
Rick D. Russotto ◽  
Aiko Voigt ◽  
Charles C. Blackmon-Luca

AbstractThe Tropical Rain belts with an Annual cycle and Continent Model Intercomparison Project (TRACMIP) ensemble includes slab-ocean aquaplanet controls and experiments with a highly idealized tropical continent: modified aquaplanet grid cells with increased evaporative resistance, increased albedo, reduced heat capacity, and no ocean heat transport (zero Q-flux). In the annual mean, an equatorial cold tongue develops west of the continent and induces dry anomalies and a split in the oceanic ITCZ. Ocean cooling is initiated by advection of cold, dry air from the winter portion of the continent; warm, humid anomalies in the summer portion are restricted to the continent by anomalous surface convergence. The surface energy budget suggests that ocean cooling persists and intensifies because of a positive feedback between a colder surface, drier and colder air, reduced downwelling long wave (LW) flux, and enhanced net surface LW cooling (LW feedback). A feedback between wind, evaporation, and SST (WES feedback) also contributes to the establishment and maintenance of the cold tongue. Simulations with a grayradiation model and simulations that diverge from protocol (with negligible winter cooling) confirm the importance of moist-radiative feedbacks and of rectification effects on the seasonal cycle. This mechanism coupling the continental and oceanic climate might be relevant to the double ITCZ bias. The key role of the LW feedback suggests that the study of interactions between monsoons and oceanic ITCZs requires full-physics models and a hierarchy of land models that considers evaporative processes alongside heat capacity as a defining characteristic of land.


2021 ◽  
Author(s):  
Carol Tamez Melendez ◽  
Judith Meyer ◽  
Audrey Douinot ◽  
Günter Blöschl ◽  
Laurent Pfister

<p>Flash flood events have caused massive damage on multiple occasions between 2016 and 2018 in several catchments in eastern Luxembourg. This region is very well known for being exposed to large-scale winter floods, commonly triggered by long-lasting advective precipitation events related to westerly atmospheric fluxes. However, flash floods - a truly exceptional phenomenon in this region - are have solely occurred in summer in response to intense convective precipitation events. Thus, because of the rare occurrence and local character of this type of events, the mechanisms eventually controlling a flash flood-type response of a catchment remains poorly understood.  </p><p>Here, we focus on four main objectives: i) the role that physiographic characteristics play on the spatial variability of pre-event hydrological states (as expressed via storage) across a set of 41 nested catchments located in the Sûre River basin (4,240 km<sup>2</sup>), Luxembourg, ii) the hydrological response to precipitation controlled by those pre-event hydrological states, iii) the responsivity (resistance) and elasticity (resilience) of the catchments to global change, and iv) the relation between water yields and the offsets from Budyko curve and its related energy limits.</p><p>The area of interest is not only characterised by a homogenous temperate oceanic climate but also by heterogeneous physiographical conditions and land use, which makes it ideal for this study. We used 8 years’ worth hydrological data (precipitation, discharge and potential evapotranspiration) to calculate the increments of the water balance and determine the maximum storage capacity and storage deficits. Second, we used the relationship between storage deficit and discharge to estimate total storage at a hypothetical nearly zero flow condition. Third, we compared the pre-hydrological states and event runoff ratios (Q/P) to the catchments’ physiographical conditions in order to link catchment’s sensitivity to storage metrics. We then assessed the responsivity and elasticity to climate and anthropogenic variations – as expressed through the PET/P and AET/P deviations from the Budyko curve and energy limits– for each individual catchment. Finally, we investigated the catchment’s area control on responsivity, elasticity, water yields and Budyko’s elements across our set of 41 nested catchments.</p>


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 457
Author(s):  
Marta Joanna Monder

Climate change affects the possibility of crop production and yield and disrupting the maintenance of crop biodiversity, including ornamentals. Warsaw is located in a temperate zone with mixed continental and oceanic climate influences. This research examines the response of once-blooming rambler roses to changing climate conditions in connection with their frost resistance and ornamental value. The 15 selected rambler rose cultivars were observed in the years 2000–2016 in the Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin. Damage to shrubs caused by frost, the timing of bud break, leaf development, and initial, full, and final flowering were recorded. We show that changes in phenology and frost damage were the effect of weather conditions in the autumn–winter–spring period. Frost damage influenced the flowering and growth of plants in different ways, depending on the extent of required pruning. The cultivars most highly tolerant to frost damage were: “Lykkefund”, “Polstjårnan”, and “Semiplena”. During the final years (2014–2016), due to mild winters, all of the studied rose cultivars could be used for a wider range of applications than previously (2000–2006 and 2009–2013). Their reintroduction helped to maintain biodiversity of old cultivars, which makes these roses a proposal for the lowlands of Central Europe.


Sign in / Sign up

Export Citation Format

Share Document