Climate change impacts on peak building cooling energy demand in a coastal megacity

2018 ◽  
Vol 13 (9) ◽  
pp. 094008 ◽  
Author(s):  
Luis Ortiz ◽  
Jorge E González ◽  
Wuyin Lin
2019 ◽  
Author(s):  
Kirsti Hakala ◽  
Nans Addor ◽  
Thibault Gobbe ◽  
Johann Ruffieux ◽  
Jan Seibert

Abstract. Anticipating and adapting to climate change impacts on water resources requires a detailed understanding of future hydroclimatic changes and of stakeholders' vulnerability to these changes. However, climate change impact studies are often conducted at a spatial scale that is too coarse to capture the specificity of individual catchments, and more importantly, the changes they focus on are not necessarily the changes most critical to stakeholders. While recent studies have combined hydrological and electricity market modeling, they tend to aggregate all climate impacts by focusing solely on reservoir profitability, and thereby provide limited insights into climate change adaptation. Here, we collaborated with Groupe E, a hydropower company operating several reservoirs in the Swiss pre-Alps and worked with them to produce hydroclimatic projections tailored to support their upcoming water concession negotiations. We started by identifying the vulnerabilities of their activities to climate change and then together chose streamflow and energy indices to characterize the associated risks. We provided Groupe E with figures showing the projected climate change impacts, which were refined over several meetings. The selected indices enabled us to simultaneously assess a variety of impacts induced by changes on i) the seasonal water volume distribution, ii) low flows, iii) high flows, and iv) energy demand. We were hence able to identify key opportunities (e.g., the future increase of reservoir inflow in winter, when electricity prices are historically high) and risks (e.g., the expected increase of consecutive days of low flows in summer and fall, which is likely to make it more difficult to meet residual flow requirements). This study highlights that the hydrological opportunities and risks associated with reservoir management in a changing climate depend on a range of factors beyond those covered by traditional impact studies. We also illustrate the importance of identifying stakeholder needs and using them to inform the production of climate impact projections. Our user-centered approach is transferable to other impact modeling studies, in the field of water resources and beyond.


2020 ◽  
Vol 12 (18) ◽  
pp. 7492
Author(s):  
Rahiel Hagos ◽  
Abdulwahab Saliu Shaibu ◽  
Lei Zhang ◽  
Xu Cai ◽  
Jianli Liang ◽  
...  

Energy and food source crop demand claims to be vulnerable to climate change impacts. The new and orphan crops, which in the past have received only limited research attention but are sustainable to environmental systems, are needed. In this review, we summarize the available literature about Ethiopian mustard as an alternative energy source and its sustainable economic importance as a new promising Brassicacea crop for new opportunities in the face of producing sustainable environment and energy development. Ethiopian mustard has many advantages and can be adopted to replace crops that are susceptible to adverse environmental conditions. Ethiopian mustard is becoming a new promising Brassicaceae crop with the current global energy demand increases. However, researchers have only focused on energy source production which has resulted in developing high erucic acid varieties. This results partly in limited studies on developing Ethiopian mustard edible oil varieties. The adoption and scaling-up of this promising crop as an oilseed crop in developing countries and Mediterranean conditions can sustain the impact of climate change with the demand for food and energy debate concepts. Indeed, further agronomic, quality and genomic studies on oilseed nutritional traits for efficient breeding and utilization are needed.


Sign in / Sign up

Export Citation Format

Share Document