cooling energy demand
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 6)

2021 ◽  
Vol 16 (2) ◽  
pp. 25-35
Author(s):  
Soufiane Boukarta

Abstract This paper explores the impact of balconies on the energy demand required for cooling in the arid climate zone of the city of Adrar, in Algeria. For the purpose to assess several situations of the balconies, we have chosen a parametric method based on a campaign of thermal simulations. The open and eliminated balcony type were selected and characterized by four parameters: the balcony to room ratio, the orientation, the window type, and the balcony position. A set of 100 simulations was selected randomly based on the Monte-Carlo probability technique. The final sample was corrected based on Cook’s distance which gave 85 simulations as a final sample size. A generalized regression model was performed to identify the impact of each parameter. The accuracy of the model is above 97% and the sensitivity analysis shows that the most important factor is the balcony to room ratio which could reduce the energy demand up to 26% followed by the window type (24%), the orientation (8%) and the balcony position (5%). This conclusion stresses the idea of considering the balcony as a passive solution to reduce the cooling energy demand.


2021 ◽  
Vol 13 (22) ◽  
pp. 12425
Author(s):  
Masoud Esfandiari ◽  
Suzaini Mohamed Zaid ◽  
Muhammad Azzam Ismail ◽  
Mohammad Reza Hafezi ◽  
Iman Asadi ◽  
...  

Energy consumption to cool an indoor environment is a substantial part of total energy end-use, particularly in a tropical climate with high energy demand for cooling. To improve energy efficiency, cooling systems can be optimized using a variety of neutral indoor temperatures to maintain a balance between an occupant’s thermal comfort and cooling energy demand. This explanatory study investigated the thermal quality and cooling energy demand of a Platinum-certified office building in the tropical climate of Malaysia. The investigation aimed to suggest a balance between occupant thermal comfort and cooling energy demand. The thermal investigation includes an objective field measurement that implements environmental equipment to monitor thermal quality and a subjective occupant’s thermal feedback using a questionnaire survey. To calculate cooling energy demand, the total equivalent temperature difference method (TETD) is applied. The results suggested an occupant’s cooling sensation of around 24 °C, with no significant difference concerning age and gender. Cooling load calculation indicated a 36% energy reduction by increasing air temperature to 26 °C, for occupants to feel thermally comfortable in a tropical climate. These findings contribute to improving sustainable energy policies, sustainable construction, and thermal comfort improvement for a tropical climate.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7420
Author(s):  
Sangtae No

Countries around the world develop and use software based on the monthly calculation method of DIN V 18599:2007 and EN ISO13790 for building energy performance evaluations. The purpose of this study is to propose a method that can consider the effect of reducing cooling energy demand by hybrid ventilation outdoor air cooling in monthly calculation method-based software. For ventilation simulation, some representative floor plans and area types of Korean residential buildings were established through literature research. A number of dynamic energy simulations were performed for various building orientations, heights, and opening factors. Based on the simulation results, a nomograph that can calculate the cooling energy demand reduction factor according to hybrid ventilation that can be applied to the ventilation heat transfer coefficient is proposed.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5799
Author(s):  
Stella Tsoka ◽  
Kondylia Velikou ◽  
Konstantia Tolika ◽  
Aikaterini Tsikaloudaki

Climate change has a major impact on the urban built environment, both with respect to the heating and cooling energy requirements, but also regarding the higher probability of confronting extreme events such as heatwaves. In parallel, the ongoing urbanization, the urban microclimate and the formation of the urban heat island effect, compounding the ongoing climate change, is also a considerable determinant of the building’s energy behavior and the outdoor thermal environment. To evaluate the magnitude of the complex phenomenon, the current research investigates the effect of climate change and urban heat island on heating and cooling energy needs of an urban building unit in Thessaloniki, Greece. The study comparatively evaluates different tools for the generation of future weather datasets, considering both statistical and dynamical downscaling methods, with the latter involving the use of a regional climate model. Based on the output of the regional climate model, another future weather dataset is created, considering not only the general climatic conditions, but also the microclimatic parameters of the examined case study area, under the future climate projections. The generated future weather datasets are then used as an input parameter in the dynamic energy performance simulations with EnergyPlus. For all examined weather datasets, the simulation results show a decrease of the heating energy use, an effect that is strongly counterbalanced by the rise of the cooling energy demand. The obtained simulation results also reveal the contribution of the urban warming of the ongoing climate change, demonstrating the need to perform a holistic analysis for the buildings’ energy needs under future climate conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrien Deroubaix ◽  
Inga Labuhn ◽  
Marie Camredon ◽  
Benjamin Gaubert ◽  
Paul-Arthur Monerie ◽  
...  

AbstractThe energy demand for heating and cooling buildings is changing with global warming. Using proxies of climate-driven energy demand based on the heating and cooling Degree-Days methodology applied to thirty global climate model simulations, we show that, over all continental areas, the climate-driven energy demand trends for heating and cooling were weak, changing by less than 10% from 1950 to 1990, but become stronger from 1990 to 2030, changing by more than 10%. With the multi-model mean, the increasing trends in cooling energy demand are more pronounced than the decreasing trends in heating. The changes in cooling, however, are highly variable depending on individual simulations, ranging from a few to several hundred percent in most of the densely populated mid-latitude areas. This work presents an example of the challenges that accompany future energy demand quantification as a result of the uncertainty in the projected climate.


2021 ◽  
pp. 128742
Author(s):  
Francisco José Sánchez de la Flor ◽  
Álvaro Ruiz-Pardo ◽  
Eduardo Diz-Mellado ◽  
Carlos Rivera-Gómez ◽  
Carmen Galán-Marín

2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


Sign in / Sign up

Export Citation Format

Share Document