ethiopian mustard
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Won Cheol Yim ◽  
Mia L. Swain ◽  
Dongna Ma ◽  
Hong An ◽  
Kevin A Bird ◽  
...  

Ethiopian mustard (Brassica carinata) is an ancient crop with significant potential for expanded cultivation as a biodiesel feedstock. The remarkable stress resilience of B. carinata and desirable seed fatty acid profile addresses the ongoing food vs. fuel debate as the crop is productive on marginal lands otherwise not suitable for even closely related species. B. carinata is one of six key Brassica spp. that share three major genomes: three diploid species (AA, BB, CC) that spontaneously hybridized in a pairwise manner, forming three allotetraploid species (AABB, AACC, and BBCC). Each of these genomes has been researched extensively, except for that of B. carinata. In the present study, we report a high-quality, 1.31 Gbp genome with 156.9-fold sequencing coverage for B. carinata var. Gomenzer, completing and confirming the classic Triangle of U, a theory of the evolutionary relationships among these six species that arose almost a century ago. Our assembly provides insights into the genomic features that give rise to B. carinata's superior agronomic traits for developing more climate-resilient Brassica crops with excellent oil production. Notably, we identified an expansion of transcription factor networks and agronomically-important gene families. Completing the Triangle of U comparative genomics platform allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in domestication and agronomical improvement.


2021 ◽  
Vol 15 (8) ◽  
pp. 250-256
Author(s):  
Yimer Ousman ◽  
Mohammed Wassu ◽  
Teju Endale ◽  
Ham Pae Do

Weed Science ◽  
2021 ◽  
pp. 1-33
Author(s):  
Ruby Tiwari ◽  
Theresa A. Reinhardt Piskackova ◽  
Pratap Devkota ◽  
Michael J. Mulvaney ◽  
Jason A. Ferrell ◽  
...  

Abstract Ethiopian mustard (Brassica carinata A. Braun) is a biofuel crop that was recently introduced in the southeastern United States. In order for this crop to be successful, there is a need to develop integrated weed management strategies that complement its rotation with summer cash crops. The objectives of this research were to evaluate the effect of previous season summer crops on winter weed emergence patterns during Ethiopian mustard growing season and to assess the impact of planting Ethiopian mustard on the emergence patterns of summer weed species. Gompertz models were fit to winter and summer weed emergence patterns. All models represented more than 80% of the variation with RMSE values less than 0.20. The emergence pattern for winter weed species was best described using Growing Degree Days (GDD) accumulation, and this model can be utilized for implementing weed control strategies at the critical Ethiopian mustard growth stages. The results also showed that summer weeds can emerge during the winter in northern Florida but do not survive frost damage, which might create off-season seed bank reductions before the summer crop growing season.


2021 ◽  
Vol 9 (4) ◽  
pp. 679
Author(s):  
Ahmed Elhady ◽  
Olivera Topalović ◽  
Holger Heuer

Plant-parasitic nematodes are a major constraint on agricultural production. They significantly impede crop yield. To complete their parasitism, they need to locate, disguise, and interact with plant signals exuded in the rhizosphere of the host plant. A specific subset of the soil microbiome can attach to the surface of nematodes in a specific manner. We hypothesized that host plants recruit species of microbes as helpers against attacking nematode species, and that these helpers differ among plant species. We investigated to what extend the attached microbial species are determined by plant species, their root exudates, and how these microbes affect nematodes. We conditioned the soil microbiome in the rhizosphere of different plant species, then employed culture-independent and culture-dependent methods to study microbial attachment to the cuticle of the phytonematode Pratylenchus penetrans. Community fingerprints of nematode-attached fungi and bacteria showed that the plant species govern the microbiome associated with the nematode cuticle. Bacteria isolated from the cuticle belonged to Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Sphingobacteria, and Firmicutes. The isolates Microbacterium sp. i.14, Lysobacter capsici i.17, and Alcaligenes sp. i.37 showed the highest attachment rates to the cuticle. The isolates Bacillus cereus i.24 and L. capsici i.17 significantly antagonized P. penetrans after attachment. Significantly more bacteria attached to P. penetrans in microbiome suspensions from bulk soil or oat rhizosphere compared to Ethiopian mustard rhizosphere. However, the latter caused a better suppression of the nematode. Conditioning the cuticle of P. penetrans with root exudates significantly decreased the number of Microbacterium sp. i.14 attaching to the cuticle, suggesting induced changes of the cuticle structure. These findings will lead to a more knowledge-driven exploitation of microbial antagonists of plant-parasitic nematodes for plant protection.


Author(s):  
Ahmed Elhady ◽  
Olivera Topalović ◽  
Holger Heuer

Plant-parasitic nematodes are a major constraint for agricultural production. They significantly impede crop yield. To complete their parasitism, they need to locate, disguise, and interact with plant signals exuded in the rhizosphere of the host plant. A specific subset of the soil microbiome can attach to the surface of nematodes in a specific manner. We hypothesized that host plants recruit species of microbes as helpers against attacking nematode species, and that these helpers differ among plant species. We investigated to what extend the attached microbial species are determined by plant species, their root exudates, and how these microbes affect nematodes. We conditioned the soil microbiome in the rhizosphere of different plant species, then employed culture-independent and culture-dependent methods to study the microbial attachment to the cuticle of the phytonematode Pratylenchus penetrans. Community fingerprints of nematode-attached fungi and bacteria showed that the plant species govern the microbiome associated with nematode cuticle. Bacteria isolated from the cuticle belonged to Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Sphingobacteria, and Firmicutes. The isolates Microbacterium sp. i.14, Lysobacter capsici i.17, and Alcaligenes sp. i.37 showed the highest attachment rates to the cuticle. The isolates Bacillus cereus i.24 and L. capsici i.17 significantly antagonized P. penetrans after attachment. Significantly more bacteria attached to P. penetrans in microbiome suspensions from bulk soil or oat rhizosphere compared to Ethiopian mustard rhizosphere. However, the latter caused a better suppression of the nematode. Conditioning the cuticle of P. penetrans with root exudates significantly decreased the number of Microbacterium sp. i.14 attaching to the cuticle, suggesting induced changes of the cuticle structure. These findings will lead to a more knowledge-driven exploitation of microbial antagonists of plant-parasitic nematodes for plant protection.


2021 ◽  
Author(s):  
Xiaoming Song ◽  
Yanping Wei ◽  
Dong Xiao ◽  
Ke Gong ◽  
Pengchuan Sun ◽  
...  

Abstract Ethiopian mustard (Brassica carinata) in the Brassicaceae family possesses many excellent agronomic traits. Here, the high-quality genome sequence of B. carinata is reported. Characterization revealed a genome anchored to 17 chromosomes with a total length of 1.087 Gb and an N50 scaffold length of 60 Mb. Repetitive sequences account for approximately 634 Mb or 58.34% of the B. carinata genome. Notably, 51.91% of 97,149 genes are confined to the terminal 20% of chromosomes as a result of the expansion of repeats in pericentromeric regions. Brassica carinata shares one whole-genome triplication event with the five other species in U’s triangle, a classic model of evolution and polyploidy in Brassica. Brassica carinata was deduced to have formed ∼0.047 Mya, which is slightly earlier than B. napus but later than B. juncea. Our analysis indicated that the relationship between the two subgenomes (BcaB and BcaC) is greater than that between other two tetraploid subgenomes (BjuB and BnaC) and their respective diploid parents. RNA-seq datasets and comparative genomic analysis were used to identify several key genes in pathways regulating disease resistance and glucosinolate metabolism. Further analyses revealed that genome triplication and tandem duplication played important roles in the expansion of those genes in Brassica species. With the genome sequencing of B. carinata completed, the genomes of all six Brassica species in U’s triangle are now resolved. The data obtained from genome sequencing, transcriptome analysis, and comparative genomic efforts in this study provide valuable insights into the genome evolution of the six Brassica species in U’s triangle.


Sign in / Sign up

Export Citation Format

Share Document