scholarly journals Unprecedented recent late-summer warm extremes recorded in tree-ring density on the Tibetan Plateau

2020 ◽  
Vol 15 (2) ◽  
pp. 024006
Author(s):  
Jianping Duan ◽  
Peili Wu ◽  
Zhuguo Ma ◽  
Yawen Duan
2017 ◽  
Vol 42 ◽  
pp. 31-41 ◽  
Author(s):  
Minhui He ◽  
Vladimir Shishov ◽  
Nazgul Kaparova ◽  
Bao Yang ◽  
Achim Bräuning ◽  
...  

2016 ◽  
Author(s):  
Xiaoxia Li ◽  
Eryuan Liang ◽  
Jozica Gricar ◽  
Sergio Rossi ◽  
Katarina Cufar ◽  
...  

ABSTRACTPhysiological and ecological mechanisms that define treelines are still debated. It is suggested that the absence of trees above the treeline is caused by the low temperature that limits growth. Thus, we raise the hypothesis that there is a critical minimum temperature (CTmin) preventing xylogenesis at treeline. We tested this hypothesis by examining weekly xylogenesis across three and four growing seasons in two natural Smith fir (Abies georgei var. smithii) treeline sites on the south-eastern Tibetan Plateau. Despite differences in the timing of cell differentiation among years, minimum air temperature was the dominant climatic variable associated with xylem growth; the critical minimum temperature (CTmin) for the onset and end of xylogenesis occurred at 0.7±0.4 °C. A process-based-modeled chronology of tree-ring formation using this CTmin was consistent with actual tree-ring data. This extremely low CTmin permits Smith fir growing at treeline to complete annual xylem production and maturation and provides both support and a mechanism for treeline formation.


2020 ◽  
pp. 1-45
Author(s):  
Hui-Wen Lai ◽  
Hans W. Chen ◽  
Julia Kukulies ◽  
Tinghai Ou ◽  
Deliang Chen

AbstractPrecipitation over the Tibetan Plateau (TP) has major societal impacts in South and East Asia, but its spatiotemporal variations are not well understood mainly because of the sparsely distributed in-situ observation sites. With help of the Global Precipitation Measurement satellite product IMERG and ERA5 reanalysis, distinct precipitation seasonality features over the TP were objectively classified using a self-organizing map algorithm fed with ten-day averaged precipitation from 2000 to 2019. The classification reveals three main precipitation regimes with distinct seasonality of precipitation: winter peak, centered at the western plateau; early summer peak, found on the eastern plateau; and late summer peak, mainly located on the southwestern plateau. On a year-to-year basis, the winter peak regime is relatively robust, while the early summer and late summer peak regimes tend to shift mainly between the central and northern TP, but are robust in the eastern and southwestern TP. A composite analysis shows that the winter peak regime experiences larger amounts of precipitation in winter and early spring when the westerly jet is anomalously strong to the north of the TP. Precipitation variations in the late summer peak regime are associated with intensity changes in the South Asian High and Indian summer monsoon. The precipitation in the early summer peak regime is correlated with the Indian summer monsoon together with anticyclonic circulation over the western North Pacific. The results provide a basic understanding of precipitation seasonality variations over the TP and associated large-scale conditions.


Sign in / Sign up

Export Citation Format

Share Document