scholarly journals Propagation of periodic wave trains along the magnetic field in a collision-free plasma

2020 ◽  
Vol 53 (42) ◽  
pp. 425701
Author(s):  
G Abbas ◽  
P G Kevrekidis ◽  
J E Allen ◽  
V Koukouloyannis ◽  
D J Frantzeskakis ◽  
...  
2020 ◽  
Vol 27 (4) ◽  
pp. 042102
Author(s):  
Gohar Abbas ◽  
J. E. Allen ◽  
M. Coppins ◽  
L. Simons ◽  
L. James

1962 ◽  
Vol 12 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P. G. Saffman

A one-dimensional steady solution of the equations of motion of a cold plasma in a magnetic field is obtained. The plasma is of semi-infinite extent, bounded by a plane interface which separates it from a vacuum or medium at rest. The particles approach from infinity, are reflected at the front, and return to infinity in the opposite direction. At infinity, the magnetic field is parallel and anti-parallel to the plasma streams, and is inclined at an angle to the normal to the interface. The front is a current sheet across which the lines of force are bent, with the component of the magnetic field in the plane of the front changing direction. The inertia of the electrons is neglected, and the characteristic frequency associated with the front is the ion gyro-frequency.


1961 ◽  
Vol 11 (1) ◽  
pp. 16-20 ◽  
Author(s):  
P. G. Saffman

It is shown that solitary hydromagnetic waves can propagate parallel to a uniform magnetic field in a cold collision-free plasma. These waves are exact solutions of the non-linear equations of motion except for the quasi-neutral approximation. The velocity of propagation lies in a range of values somewhat larger than the Alfvén velocity, and is of the order of 25 times the Alfvén velocity for hydrogen, the precise value depending upon the strength of the wave. Simple expressions exist for the velocities of the ions and electrons and the magnetic field inside the wave. The lines of force are spirals about the direction of propagation. The waves are symmetrical about their middle. The order of magnitude of their width is the geometric mean of the gyro-radii of the ions and electrons when moving with the Alfvén velocity. The maximum value of the magnetic field can be somewhat larger than the value away from the wave.


2000 ◽  
Vol 195 ◽  
pp. 213-222 ◽  
Author(s):  
Y. Uchida ◽  
M. Nakamura ◽  
T. Miyagoshi ◽  
T. Kobayashi ◽  
T. Mukawa ◽  
...  

In the present paper, we stress the importance of the magnetic field in the problem of acceleration and collimation of astrophysical jets, and discuss our proposed generic picture for such “central gravitator + jets + lobes” systems and inherent interpretations of the various observational characteristics of such systems: Mechanisms are proposed for (1) the enhanced liberation of gravitational energy at the central object, (2) the transfer of a part of the liberated energy along the large-scale magnetic field by large-amplitude, torsional Alfvén wave trains that form collimated jets (we call this a sweeping pinch process), (3) the dumping of the transferred energy at the end of the jets when they impinge on the denser region outside the border of the “cavity” from which the mass contracted to the central condensation (central gravitator + accretion disk, as well as the larger-scale condensation surrounding them), and (4) the formation of wiggled jets and lobes as helical kinks and the tucked-up magnetic field produced in the sweeping pinch process, respectively.


1986 ◽  
Vol 35 (1) ◽  
pp. 133-139 ◽  
Author(s):  
A. H. Boozer

The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.


2010 ◽  
Vol 28 (6) ◽  
pp. 1229-1248 ◽  
Author(s):  
B. U. Ö. Sonnerup ◽  
S. E. Haaland ◽  
G. Paschmann

Abstract. A theoretical model is proposed to account for some of the behavior of arc-polarized magnetic structures seen in the solar wind. To this end, an exact analytical solution is developed that describes infinite plane wave trains of arbitrary amplitude in a plasma governed by ideal Hall MHD. The main focus is on intermediate-mode wave trains, which display double-branched magnetic hodogram signatures similar to those seen in the solar wind. The theoretically derived hodograms have field rotation in the ion-polarized sense at a slightly depressed field magnitude on one branch and an electron-polarized rotation at a slightly enhanced field magnitude on the other branch. The two branches are joined at the two "turning points", at which the normal flow is exactly Alfvénic. The behavior is accounted for in terms of the opposite dispersive properties of ion and electron whistlers. The hodograms derived from the theory are shown to compare favorably with those of one event, observed by the Cluster spacecraft near the ecliptic plane, and one event at high heliographic latitude observed by the Ulysses spacecraft. However, these two observed structures comprise only a single full wave period, approximately from one turning point to the other and then back again. The theory can be used to predict propagation direction (away from, or towards, the sun) from magnetic data alone, provided the sign of the magnetic field component along the wave normal can be reliably determined. Under the same condition, it also predicts whether the ion-polarized branch should precede or follow the electron-polarized branch. Both behaviors are seen in the solar wind. The major shortcoming of the theory is that it fails to reproduce the observed saw-tooth like time series for the magnetic field, in which the field rotation is rapid in the ion sense and slow in the electron sense. Instead, the theory gives about the same rotation rates. Possible explanations for this discrepancy are discussed. Also discussed is the fact that the magnetic field measurements by Cluster, while giving high quality determinations of normal direction and normal field component for each of the four spacecraft, indicate a reversal of the normal field component and the predicted propagation sense during the event, as well as a wide spread in the four normal vector orientations.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Sign in / Sign up

Export Citation Format

Share Document