scholarly journals Morpho-chemical evaluation of soybean genotypes across tropical agroecosystem

Author(s):  
A Krisnawati ◽  
M M Adie
Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
M Mujeeb ◽  
NA Siddique ◽  
A Ahmad ◽  
S Ahmad

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
JP Ferreira-Neto ◽  
RJSA Padilha ◽  
ERB Santana ◽  
DN Gomes ◽  
KXFR Sena ◽  
...  

2004 ◽  
Vol 52 (2) ◽  
pp. 157-163
Author(s):  
C. U. Egbo ◽  
M. A. Adagba ◽  
D. K. Adedzwa

Field trials were conducted in the wet seasons of 1997 and 1998 at Makurdi, Otukpo and Yandev in the Southern Guinea Savanna ecological zone of Nigeria to study the responses of ten soybean genotypes to intercropping. The experiment was laid out in a randomised complete block design. The genotypes TGX 1807-19F, NCRI-Soy2, Cameroon Late and TGX 1485-1D had the highest grain yield. All the Land Equivalent Ratio (LER) values were higher than unity, indicating that there is great advantage in intercropping maize with soybean. The yield of soybean was positively correlated with the days to 50% flowering, days to maturity, plant height, pods/plant and leaf area, indicating that an improvement in any of these traits will be reflected in an increase in seed yield. There was a significant genotype × yield × location interaction for all traits. This suggests that none of these factors acted independently. Similarly, the genotype × location interaction was more important than the genotype × year interaction for seed yield, indicating that the yield response of the ten soybean genotypes varied across locations rather than across years. Therefore, using more testing sites for evaluation may be more important than the number of years.


Author(s):  
V. М. Lukomets ◽  
S. V. Zelentsov

To improve the effectiveness of the soybeans and oil flax breeding, research to improve existing and develop new breeding methods are conducting in all-Russia Research institute of Oil Crops (Krasnodar). One of the improved methods for the soybean breeding, based on the use of sources of complexes of compensatory genes, is the CCG technology, which allows to create varieties with an increased yield of a heterotic level transmitted along the progeny for the entire life cycle of the variety. For the purpose of non-transgenic production of new traits, a theory of polyploid recombination of the genome (TPR) was formulated, which models the mechanism of the natural formation of polymorphism in the centers of origin of cultivated plants. On the basis of this theory, a method of breeding (TPR-technology) has been developed, which makes it possible to obtain recombinant reploids of soybeans and oil flax with an extended spectrum of traits. Of these reploids, the soybean lines with increased sucking force of the roots, providing high drought resistance, were distinguished; cold-resistant soybean lines, which stand in the phase of shoots of freezing to minus 5 °С; lines of oil flax with complete resistance to flax sickness of soil and high resistance to Fusarium; winter-hardy flax lines that withstand winter frosts down to minus 20–23 °С and ripen one and a half months earlier than spring sowings. Another original developed method is the ODCS-technology for isolating and selecting soybean genotypes with high resistance to fungal pathogens. The physiological basis of ODCS-technology is the blocking of osmotic nutrition of pathogenic fungi due to genetically determined increased osmotic pressure in the tissues of host plants. The practical implementation of CCG-, TPR- and ODKS-technologies in the selection process, allowed to create a whole series of soybean and oil flax varieties with improved or new traits.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Ik-Young Choi ◽  
Prakash Basnet ◽  
Hana Yoo ◽  
Neha Samir Roy ◽  
Rahul Vasudeo Ramekar ◽  
...  

Soybean cyst nematode (SCN) is one of the most damaging pest of soybean. Discovery and characterization of the genes involved in SCN resistance are important in soybean breeding. Soluble NSF attachment protein (SNAP) genes are related to SCN resistance in soybean. SNAP genes include five gene families, and 2 haplotypes of exons 6 and 9 of SNAP18 are considered resistant to the SCN. In present study the haplotypes of GmSNAP18 were surveyed and chacterized in a total of 60 diverse soybean genotypes including Korean cultivars, landraces, and wild-types. The target region of exons 6 and 9 in GmSNAP18 region was amplified and sequenced to examine nucleotide variation. Characterization of 5 haplotypes identified in present study for the GmSNAP18 gene revealed two haplotypes as resistant, 1 as susceptible and two as novel. A total of twelve genotypes showed resistant haplotypes, and 45 cultivars were found susceptible. Interestingly, the two novel haplotypes were present in 3 soybean lines. The information provided here about the haplotypic variation of GmSNAP18 gene can be further explored for soybean breeding to develop resistant varieties.


Author(s):  
Sweata Rani Rai ◽  
Sabia Nazmin

Background: Aging is often associated with the incidence of degenerative diseases such as cardiovascular, cerebrovascular diseases, diabetes, osteoporosis, and cancer, which affects dietary eating patterns in older adults. With advancing age, there is a decline in appetite and a reduced affinity to food. However, the eighty million citizens of West Bengal including the older adults have a craving for sweets. Therefore, the present study aims to evaluate the sensory and chemical evaluation of Sandesh prepared from soymilk and dates adhering to nutritional needs and dietary preference towards sweets for older adults. Method: Sandesh is prepared with the substitution of traditional milk chenna (fresh, unripened curd cheese made from cow milk/ buffalo milk)with soy milk and dates syrup.


Crop Science ◽  
1967 ◽  
Vol 7 (2) ◽  
pp. 99-103 ◽  
Author(s):  
W. D. Hanson ◽  
A. H. Probst ◽  
B. E. Caldwell
Keyword(s):  

Crop Science ◽  
1983 ◽  
Vol 23 (5) ◽  
pp. 897-899 ◽  
Author(s):  
S. E. Hawkins ◽  
W. R. Fehr ◽  
E. G. Hammond ◽  
S. Rodriguez de Cianzio

Sign in / Sign up

Export Citation Format

Share Document