scholarly journals Experimental Study on Thermal Conductivity of Sand Solidified by Microbially Induced Calcium Carbonate Precipitation

Author(s):  
Jinhua Ding ◽  
Zhaoyu Wang ◽  
Nan Zhang ◽  
Pengming Jiang ◽  
Mingxing Peng ◽  
...  
2022 ◽  
Vol 8 ◽  
pp. 100061
Author(s):  
Fabiane S. Serpa ◽  
Gabriela M. Silva ◽  
Lucas F.L. Freitas ◽  
Elvio B. Melo Filho ◽  
Jailton F. Nascimento ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zhaoyu Wang ◽  
Nan Zhang ◽  
Fei Lin ◽  
Jinhua Ding ◽  
Huimin Yang

With an increasing energy demand, exploration and utilization of new energy resources become more significant recently. Geothermal energy, characterized as a clean, renewable, and sustainable energy, has various engineering applications. Microbial-induced calcium carbonate precipitation (MICP) technique has a potential to improve soil thermal properties for geothermal applications. In this study, thermal conductivity of dry sands treated using MICP technique with different treatment cycles was investigated in laboratory. The results showed that thermal conductivity of MICP-treated sands was much higher than that of the untreated sand under dry condition and it increased with increasing treatment cycles. Based on the scanning electron microscopy (SEM) analyses, it is found MICP-induced CaCO3crystals are being formed among sand particles functioned as “thermal bridge,” which provided more highly effective heat transfer path. It is concluded that the MICP technique could significantly improve the thermal conductivity of sands and the overall heat transfer efficiency. It is advantageous to use MICP-treated soils as enhanced grout materials for underground energy geostructures.


2013 ◽  
Vol 67 (12) ◽  
pp. 2784-2790 ◽  
Author(s):  
Miao Xuefei ◽  
Xiong Lan ◽  
Chen Jiapeng ◽  
Yang Zikang ◽  
He Wei

The present study investigated the effectiveness of electromagnetic fields in preventing calcium carbonate (CaCO3) fouling in cooling water. Four different frequencies and two different voltages were adopted to induce electromagnetic fields directly in water with constant water temperature and constant flow velocity. Artificial hard water was used. The solution conductivities decreased by 17–25% from their initial values in the electromagnetic anti-fouling treatment (EAT) cases, depending on different frequencies of electric pulses, whereas the untreated case dropped by 31%. The particle size became small and the crystal structure changed into loose style after EAT. The EAT device independently developed by the State Key Laboratory had been validated as an effective apparatus in preventing CaCO3 fouling in cooling water.


Sign in / Sign up

Export Citation Format

Share Document