scholarly journals Solving Poisson’s Ratio of Single-Layer Composites Acted by Normal Force with Interface Non-Slip Condition

Author(s):  
Yanru Li ◽  
Liqiang Wang ◽  
Haibo Jiang
Nanoscale ◽  
2021 ◽  
Author(s):  
Lingling Bai ◽  
Yifan Gao ◽  
Junhao Peng ◽  
Xing Xie ◽  
Minru Wen ◽  
...  

Zero (or near-zero) Poisson's ratio (ZPR) materials have important applications in the field of precision instrument because one of its faces is stable and will not be affected by strain....


2014 ◽  
Vol 104 (8) ◽  
pp. 081902 ◽  
Author(s):  
Baolin Wang ◽  
Jiangtao Wu ◽  
Xiaokun Gu ◽  
Hanqing Yin ◽  
Yujie Wei ◽  
...  

1940 ◽  
Vol 7 (3) ◽  
pp. A113-A116
Author(s):  
H. M. Westergaard

Abstract Some problems of elasticity have a simple solution for a particular value of Poisson’s ratio. For example, Boussinesq’s problem of a normal force and Cerruti’s problem of a tangential force, acting on the plane surface of a semi-infinite solid, are solved when Poisson’s ratio is 1/2 by referring to Kelvin’s problem of a force at a point in the interior of an infinite solid. For, when Poisson’s ratio is 1/2, the solution of Kelvin’s problem can be stated in terms of one principal stress at each point, acting along the radial line from the point of the load; the other principal stresses are zero; and one half of the total force may be assigned to one half of the infinite solid. For other values of Poisson’s ratio terms must be added in the formulas for the displacements and stresses. The derivations that have been available are somewhat lengthy, especially for Cerruti’s problem. The difficulties are reduced by a simple analytical device, here called “the twinned gradient.” The displacement to be added by the change of Poisson’s ratio is stated as the gradient of a potential except that one of the components is replaced by its twin, an identical component in reversed direction. This device also lends itself to a simplification of the analysis of stresses in a rotating thick disk.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 939-954 ◽  
Author(s):  
Subhashis Mallick

I cast the inversion of amplitude‐variation‐with‐offset (AVO) data into the framework of Bayesian statistics. Under such a framework, the model parameters and the physics of the forward problem are used to generate synthetic data. These synthetic data are then matched with the observed data to obtain an a‐posteriori probability density (PPD) function in the model space. The genetic algorithm (GA) uses a directed random search technique to estimate the shape of the PPD. Unlike the classical inversion methods, GA does not depend upon the choice of an initial model and is well suited for the AVO inversion. For the single‐layer AVO inversion where the amplitudes from a single reflection event are inverted, GA estimates the normal incidence reflection coefficient [Formula: see text] and the contrast of the Poisson’s ratio (Δσ) to reasonable accuracy, even when the signal‐to‐noise ratio is poor. Comparisons of single‐layer amplitude inversion using synthetic data demonstrate that GA inversion obtains more accurate results than does the least‐squares fit to the approximate reflection coefficients as is usually practiced in the industry. In the multilayer AVO waveform inversion, all or a part of the prestack data are inverted. Inversion of this type is nonunique for the estimation of the absolute values of velocities, Poisson’s ratios, and densities. However, by applying simplified approximations to the P‐wave reflection coefficient, I verify that [Formula: see text], the contrast in the acoustic impedance (ΔA), and the gradient in the reflection coefficient (G), can be estimated from such an inversion. From the GA estimated values of [Formula: see text], ΔA, and G, and from reliable estimates of velocity and Poisson’s ratio at the start time of the input data, an inverted model can be generated. I apply this procedure to marine data and demonstrate that the the synthetics computed from such an inverted model match the input data to reasonable accuracy. Comparison of the log data from a nearby well shows that the GA inversion obtains both the low‐ and the high‐frequency trends (within the bandwidth of seismic resolution) of the P‐wave acoustic impedance. In addition to P‐wave acoustic impedance, GA also obtains an estimate of the Poisson’s ratio, an extremely important parameter for the direct detection of hydrocarbons from seismic data.


2017 ◽  
Vol 254 (12) ◽  
pp. 1700285 ◽  
Author(s):  
Duc Tam Ho ◽  
Viet Hung Ho ◽  
Harold S. Park ◽  
Sung Youb Kim

Nano Letters ◽  
2016 ◽  
Vol 16 (8) ◽  
pp. 5286-5290 ◽  
Author(s):  
Jin-Wu Jiang ◽  
Tienchong Chang ◽  
Xingming Guo ◽  
Harold S. Park

Sign in / Sign up

Export Citation Format

Share Document