scholarly journals A simulated distribution of Siberian river runoff in the Arctic Ocean

Author(s):  
E Golubeva ◽  
G Platov ◽  
D Iakshina ◽  
M Kraineva
2001 ◽  
Vol 106 (C5) ◽  
pp. 9075-9092 ◽  
Author(s):  
Brenda Ekwurzel ◽  
Peter Schlosser ◽  
Richard A. Mortlock ◽  
Richard G. Fairbanks ◽  
James H. Swift

2003 ◽  
Vol 30 (6) ◽  
pp. 593-601 ◽  
Author(s):  
I. A. Shiklomanov ◽  
A. I. Shiklomanov

2021 ◽  
Vol 13 (19) ◽  
pp. 3828
Author(s):  
Marta Umbert ◽  
Carolina Gabarro ◽  
Estrella Olmedo ◽  
Rafael Gonçalves-Araujo ◽  
Sebastien Guimbard ◽  
...  

The overall volume of freshwater entering the Arctic Ocean has been growing as glaciers melt and river runoff increases. Since 1980, a 20% increase in river runoff has been observed in the Arctic system. As the discharges of the Ob, Yenisei, and Lena rivers are an important source of freshwater in the Kara and Laptev Seas, an increase in river discharge might have a significant impact on the upper ocean circulation. The fresh river water mixes with ocean water and forms a large freshened surface layer (FSL), which carries high loads of dissolved organic matter and suspended matter into the Arctic Ocean. Optically active material (e.g., phytoplankton and detrital matter) are spread out into plumes, which are evident in satellite data. Russian river signatures in the Kara and Laptev Seas are also evident in recent SMOS Sea Surface Salinity (SSS) Arctic products. In this study, we compare the new Arctic+ SSS products, produced at the Barcelona Expert Center, with the Ocean Color absorption coefficient of colored detrital matter (CDM) in the Kara and Laptev Seas for the period 2011–2019. The SSS and CDM are found to be strongly negatively correlated in the regions of freshwater influence, with regression coefficients between −0.72 and −0.91 in the studied period. Exploiting this linear correlation, we estimate the SSS back to 1998 using two techniques: one assuming that the relationship between the CDM and SSS varies regionally in the river-influenced areas, and another assuming that it does not. We use the 22-year time-series of reconstructed SSS to estimate the interannual variability of the extension of the FSL in the Kara and Laptev Seas as well as their freshwater content. For the Kara and Laptev Seas, we use 32 and 28 psu as reference salinities, and 26 and 24 psu isohalines as FSL boundaries, respectively. The average FSL extension in the Kara Sea is 2089–2611 km2, with a typical freshwater content of 11.84–14.02 km3. The Laptev Sea has a slightly higher mean FSL extension of 2320–2686 km2 and a freshwater content of 10.15–12.44 km3. The yearly mean freshwater content and extension of the FSL, computed from SMOS SSS and Optical data, is (as expected) found to co-vary with in situ measurements of river discharge from the Arctic Great Rivers Observatory database, demonstrating the potential of SMOS SSS to better monitor the river discharge changes in Eurasia and to understand the Arctic freshwater system during the ice-free season.


2007 ◽  
Vol 34 (2) ◽  
pp. 171-174 ◽  
Author(s):  
N. A. Bakunov ◽  
L. M. Savatyugin ◽  
D. Yu. Bol’shiyanov

2021 ◽  
Author(s):  
Marina Tarkhanova ◽  
Elena Golubeva

<p>The report discusses issues related to the influence of the increased discharge of Arctic rivers on the thermohaline structure of waters outside the Arctic shelf and, in particular, on the variability of Arctic Ocean heat content. The three-dimensional numerical model of the ocean and sea ice SibCIOM (Siberian Coupled Ice-Ocean Model), developed at the Institute of Computational Mathematics and Mathematical Geophysics SB RAS to study the climatic variability of the Arctic Ocean, and the NCEP/NCAR atmospheric reanalysis data are used.</p><p>To reveal the sensitivity of the model fields to the intensity of river runoff, numerical experiments assume the inclusion of variations in river discharge with unchanged remaining conditions, starting from 2000. The deviations of the monthly average values in a numerical experiment with increased discharge of individual Arctic rivers from the basic situation based on the monthly average climatic runoff assignment are considered.</p><p>An analysis of the numerical results obtained with increased discharge of the major Siberian rivers (Ob, Yenisei, Lena) by 1.3 times showed an increase in the Kara Sea's bottom temperature. This was followed by the warming of the subsurface layer of the waters propagating along the continental slope and increasing the heat content of the upper 200-meter layer of the Eastern Eurasian Basin. The heat preservation entering the deep-water part through the Kara Sea straits was facilitated by an increase in stratification's stability and a decrease of the mixed layer depth by 5-10 m on the continental slope of the Eurasian Basin. A similar process with a time delay (6-7 years) and on a smaller scale is developing on the Amerasian basin's continental slope and the Chukchi Sea shelf.</p><p>In the numerical experiment with an increased discharge of the Mackenzie River, deviations in the Beaufort Sea heat and freshwater content appear during the first two years. Still, their values are too small under the river's small discharge compared to the Siberian rivers' discharge.</p><p>The study is supported by the Russian Foundation for Basic Research, Grant No. 20-05-00536 A.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ronja Paffrath ◽  
Georgi Laukert ◽  
Dorothea Bauch ◽  
Michiel Rutgers van der Loeff ◽  
Katharina Pahnke

AbstractThe Siberian rivers supply large amounts of freshwater and terrestrial derived material to the Arctic Ocean. Although riverine freshwater and constituents have been identified in the central Arctic Ocean, the individual contributions of the Siberian rivers to and their spatiotemporal distributions in the Transpolar Drift (TPD), the major wind-driven current in the Eurasian sector of the Arctic Ocean, are unknown. Determining the influence of individual Siberian rivers downstream the TPD, however, is critical to forecast responses in polar and sub-polar hydrography and biogeochemistry to the anticipated individual changes in river discharge and freshwater composition. Here, we identify the contributions from the largest Siberian river systems, the Lena and Yenisei/Ob, in the TPD using dissolved neodymium isotopes and rare earth element concentrations. We further demonstrate their vertical and lateral separation that is likely due to distinct temporal emplacements of Lena and Yenisei/Ob waters in the TPD as well as prior mixing of Yenisei/Ob water with ambient waters.


2005 ◽  
Vol 32 (6) ◽  
pp. 587-593 ◽  
Author(s):  
Yu. A. Simonov ◽  
A. V. Khristoforov

Sign in / Sign up

Export Citation Format

Share Document