scholarly journals A comparative study of using Random Forests (RF), Extreme Learning Machine (ELM) and Deep Learning (DL) algorithms in modelling Roadside Particulate Matter (PM10 & PM2.5)

Author(s):  
A Suleiman ◽  
M R Tight ◽  
A D Quinn
2020 ◽  
Vol 13 (4) ◽  
pp. 1237-1250
Author(s):  
Deepak Kumar ◽  
Thendiyath Roshni ◽  
Anshuman Singh ◽  
Madan Kumar Jha ◽  
Pijush Samui

Author(s):  
Iago Richard Rodrigues ◽  
Sebastião Rogério ◽  
Judith Kelner ◽  
Djamel Sadok ◽  
Patricia Takako Endo

Many works have recently identified the need to combine deep learning with extreme learning to strike a performance balance with accuracy especially in the domain of multimedia applications. Considering this new paradigm, namely convolutional extreme learning machine (CELM), we present a systematic review that investigates alternative deep learning architectures that use extreme learning machine (ELM) for a faster training to solve problems based on image analysis. We detail each of the architectures found in the literature, application scenarios, benchmark datasets, main results, advantages, and present the open challenges for CELM. We follow a well structured methodology and establish relevant research questions that guide our findings. We hope that the observation and classification of such works can leverage the CELM research area providing a good starting point to cope with some of the current problems in the image-based computer vision analysis.


2020 ◽  
Vol 10 (21) ◽  
pp. 7488
Author(s):  
Yutu Yang ◽  
Xiaolin Zhou ◽  
Ying Liu ◽  
Zhongkang Hu ◽  
Fenglong Ding

The deep learning feature extraction method and extreme learning machine (ELM) classification method are combined to establish a depth extreme learning machine model for wood image defect detection. The convolution neural network (CNN) algorithm alone tends to provide inaccurate defect locations, incomplete defect contour and boundary information, and inaccurate recognition of defect types. The nonsubsampled shearlet transform (NSST) is used here to preprocess the wood images, which reduces the complexity and computation of the image processing. CNN is then applied to manage the deep algorithm design of the wood images. The simple linear iterative clustering algorithm is used to improve the initial model; the obtained image features are used as ELM classification inputs. ELM has faster training speed and stronger generalization ability than other similar neural networks, but the random selection of input weights and thresholds degrades the classification accuracy. A genetic algorithm is used here to optimize the initial parameters of the ELM to stabilize the network classification performance. The depth extreme learning machine can extract high-level abstract information from the data, does not require iterative adjustment of the network weights, has high calculation efficiency, and allows CNN to effectively extract the wood defect contour. The distributed input data feature is automatically expressed in layer form by deep learning pre-training. The wood defect recognition accuracy reached 96.72% in a test time of only 187 ms.


Sign in / Sign up

Export Citation Format

Share Document